Enabling scientific machine learning in MOOSE using Libtorch

被引:0
|
作者
German, Peter [1 ]
Yushu, Dewen [2 ]
机构
[1] Idaho Natl Lab, Computat Frameworks Dept, Idaho Falls, ID 83415 USA
[2] Idaho Natl Lab, Computat Mech & Mat Dept, Idaho Falls, ID 83415 USA
关键词
MOOSE; Libtorch; Scientific machine learning; Reinforcement learning;
D O I
10.1016/j.softx.2023.101489
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A neural-network-based machine learning interface has been developed for the Multiphysics Object-Oriented Simulation Environment (MOOSE). The interface relies on Libtorch, the C++ front-end of PyTorch, and enables an online interaction between modern machine learning algorithms and all the existing simulation, modeling, and analysis processes available in MOOSE. New capabilities in MOOSE include the native generation and training of artificial neural networks together with options to load pretrained neural networks in TorchScript format. Furthermore, the MOOSE stochastic tools module (MOOSE-STM) has been enhanced with neural network-based surrogate and reduced-order model generation options for efficient stochastic analyses. Lastly, a reinforcement learning capability has been added to MOOSE-STM for the interactive control and optimization of complex multiphysics problems.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning
    Ogungbuyi, Michael Gbenga
    Guerschman, Juan P. P.
    Fischer, Andrew M. M.
    Crabbe, Richard Azu
    Mohammed, Caroline
    Scarth, Peter
    Tickle, Phil
    Whitehead, Jason
    Harrison, Matthew Tom
    LAND, 2023, 12 (06)
  • [2] Diagnosis Recommendation Using Machine Learning Scientific Workflows
    Ahmed, Ishtiaq
    Lu, Shiyong
    Bai, Changxin
    Bhuyan, Fahima Amin
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 82 - 90
  • [3] Generating Flavor Molecules Using Scientific Machine Learning
    Queiroz, Luana P.
    Rebello, Carine M.
    Costa, Erbet A.
    Santana, Vinicius V.
    Rodrigues, Bruno C. L.
    Rodrigues, Alirio E.
    Ribeiro, Ana M.
    Nogueira, Idelfonso B. R.
    ACS OMEGA, 2023, 8 (12): : 10875 - 10887
  • [4] MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies
    Zhao, Zhuowen
    Chavez, Tanny
    Holman, Elizabeth A.
    Hao, Guanhua
    Green, Adam
    Krishnan, Harinarayan
    McReynolds, Dylan
    Pandolfi, Ronald J.
    Roberts, Eric J.
    Zwart, Petrus H.
    Yanxon, Howard
    Schwarz, Nicholas
    Sankaranarayanan, Subramanian
    Kalinin, Sergei V.
    Mehta, Apurva
    Campbell, Stuart I.
    Hexemer, Alexander
    2022 4TH ANNUAL WORKSHOP ON EXTREME-SCALE EXPERIMENT-IN-THE-LOOP COMPUTING, XLOOP, 2022, : 10 - 15
  • [5] Adaptive Protection of Scientific Backbone Networks Using Machine Learning
    Mogyorosi, Ferenc
    Pasic, Alija
    Cziva, Richard
    Revisnyei, Peter
    Kenesi, Zsolt
    Tapolcai, Janos
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (01): : 1064 - 1076
  • [6] Ocean Acoustic Propagation Modeling Using Scientific Machine Learning
    Li Kexin
    Chitre, Mandar
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [7] Scientific Text Sentiment Analysis using Machine Learning Techniques
    Raza, Hassan
    Faizan, M.
    Hamza, Ahsan
    Mushtaq, Ahmed
    Akhtar, Naeem
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 157 - 165
  • [8] Modular performance prediction for scientific workflows using Machine Learning
    Singh, Alok
    Purawat, Shweta
    Rao, Arvind
    Altintas, Ilkay
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 114 : 1 - 14
  • [9] SCIENTIFIC MACHINE LEARNING: A SYMBIOSIS
    Keith, Brendan
    O'leary-roseberry, Thomas
    Sanderse, Benjamin
    Scheichl, Robert
    Waanders, Bart van bloemen
    FOUNDATIONS OF DATA SCIENCE, 2025, 7 (01):
  • [10] Scientific machine learning benchmarks
    Jeyan Thiyagalingam
    Mallikarjun Shankar
    Geoffrey Fox
    Tony Hey
    Nature Reviews Physics, 2022, 4 : 413 - 420