SCIENTIFIC MACHINE LEARNING: A SYMBIOSIS

被引:0
|
作者
Keith, Brendan [1 ]
O'leary-roseberry, Thomas [2 ]
Sanderse, Benjamin [3 ]
Scheichl, Robert [4 ]
Waanders, Bart van bloemen [5 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Univ Texas Austin, Austin, TX USA
[3] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[4] Heidelberg Univ, Heidelberg, Germany
[5] Sandia Natl Labs, Albuquerque, NM USA
来源
FOUNDATIONS OF DATA SCIENCE | 2025年 / 7卷 / 01期
关键词
D O I
10.3934/fods.2024051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This editorial serves as a preface to the "Scientific Machine Learning" (SciML) special issue of the AIMS Foundations of Data Science journal. In this piece, we contend that SciML exists in a symbiotic relationship with the fields of computational science and engineering (CSE) and machine learning (ML). We highlight the progress (and limitations) of CSE and reflect on the recent successes of ML. While ML creates significant possibilities for advancing simulation techniques, it lacks the mathematical guarantees that are typically found in CSE. We argue that as SciML develops and embraces the remarkable capabilities of ML, it will support, not replace, traditional methods of CSE. We then overview some existing challenges and opportunities in this interdisciplinary field and close by introducing the special issue papers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Scientific machine learning benchmarks
    Jeyan Thiyagalingam
    Mallikarjun Shankar
    Geoffrey Fox
    Tony Hey
    Nature Reviews Physics, 2022, 4 : 413 - 420
  • [2] Scientific machine learning benchmarks
    Thiyagalingam, Jeyan
    Shankar, Mallikarjun
    Fox, Geoffrey
    Hey, Tony
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 413 - 420
  • [3] Sharing the Right Data Right: A Symbiosis with Machine Learning
    Tsaftaris, Sotirios A.
    Scharr, Hanno
    TRENDS IN PLANT SCIENCE, 2019, 24 (02) : 99 - 102
  • [4] Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis
    Kim, Ryan Gary
    Doppa, Janardhan Rao
    Pande, Partha Pratim
    Marculescu, Diana
    Marculescu, Radu
    COMPUTER, 2018, 51 (07) : 66 - 77
  • [5] Machine Learning and the Future of Scientific Explanation
    Boge, Florian J.
    Poznic, Michael
    JOURNAL FOR GENERAL PHILOSOPHY OF SCIENCE, 2021, 52 (01) : 171 - 176
  • [6] Research on Machine Learning for Scientific Discovery
    Meng X.-F.
    Hao X.-L.
    Ma C.-H.
    Yang C.
    Maoliniyazi A.-S.
    Wu C.
    Wei J.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (05): : 877 - 895
  • [7] The role of machine learning in scientific workflows
    Deelman, Ewa
    Mandal, Anirban
    Jiang, Ming
    Sakellariou, Rizos
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (06): : 1128 - 1139
  • [8] SCIENTIFIC MACHINE LEARNING TAKES OFF
    Fairen-Jimenez, David
    ADVANCED MATERIALS & PROCESSES, 2020, 178 (06): : 7 - 7
  • [9] Machine Learning and the Future of Scientific Explanation
    Florian J. Boge
    Michael Poznic
    Journal for General Philosophy of Science, 2021, 52 : 171 - 176
  • [10] Adversarial Controls for Scientific Machine Learning
    Chuang, Kangway V.
    Keiser, Michael J.
    ACS CHEMICAL BIOLOGY, 2018, 13 (10) : 2819 - 2821