SCIENTIFIC MACHINE LEARNING: A SYMBIOSIS

被引:0
|
作者
Keith, Brendan [1 ]
O'leary-roseberry, Thomas [2 ]
Sanderse, Benjamin [3 ]
Scheichl, Robert [4 ]
Waanders, Bart van bloemen [5 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Univ Texas Austin, Austin, TX USA
[3] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[4] Heidelberg Univ, Heidelberg, Germany
[5] Sandia Natl Labs, Albuquerque, NM USA
来源
FOUNDATIONS OF DATA SCIENCE | 2025年 / 7卷 / 01期
关键词
D O I
10.3934/fods.2024051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This editorial serves as a preface to the "Scientific Machine Learning" (SciML) special issue of the AIMS Foundations of Data Science journal. In this piece, we contend that SciML exists in a symbiotic relationship with the fields of computational science and engineering (CSE) and machine learning (ML). We highlight the progress (and limitations) of CSE and reflect on the recent successes of ML. While ML creates significant possibilities for advancing simulation techniques, it lacks the mathematical guarantees that are typically found in CSE. We argue that as SciML develops and embraces the remarkable capabilities of ML, it will support, not replace, traditional methods of CSE. We then overview some existing challenges and opportunities in this interdisciplinary field and close by introducing the special issue papers.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Interpretable models for extrapolation in scientific machine learning
    Muckley, Eric S.
    Saal, James E.
    Meredig, Bryce
    Roper, Christopher S.
    Martin, John H.
    DIGITAL DISCOVERY, 2023, 2 (05): : 1425 - 1435
  • [22] Causal scientific explanations from machine learning
    Stefan Buijsman
    Synthese, 202
  • [23] Workflow provenance in the lifecycle of scientific machine learning
    Souza, Renan
    Azevedo, Leonardo G.
    Lourenco, Vitor
    Soares, Elton
    Thiago, Raphael
    Brandao, Rafael
    Civitarese, Daniel
    Brazil, Emilio Vital
    Moreno, Marcio
    Valduriez, Patrick
    Mattoso, Marta
    Cerqueira, Renato
    Netto, Marco A. S.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (14):
  • [24] PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
    Takamoto, Makoto
    Praditia, Timothy
    Leiteritz, Raphael
    MacKinlay, Dan
    Alesiani, Francesco
    Pflueger, Dirk
    Niepert, Mathias
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] The human machine symbiosis
    Cooley, M
    PROFESSIONAL CONGRESS ON INFORMATION AND COMMUNICATION, 2000, 1520 : 115 - 128
  • [26] The rise of scientific machine learning: a perspective on combining mechanistic modelling with machine learning for systems biology
    Noordijk, Ben
    Gomez, Monica L. Garcia
    ten Tusscher, Kirsten H. W. J.
    de Ridder, Dick
    van Dijk, Aalt D. J.
    Smith, Robert W.
    FRONTIERS IN SYSTEMS BIOLOGY, 2024, 4
  • [27] Applying machine learning to automatically assess scientific models
    Zhai, Xiaoming
    He, Peng
    Krajcik, Joseph
    JOURNAL OF RESEARCH IN SCIENCE TEACHING, 2022, 59 (10) : 1765 - 1794
  • [28] The limitations of machine learning models for predicting scientific replicability
    Crockett, M. J.
    Bai, Xuechunzi
    Kapoor, Sayash
    Messeri, Lisa
    Narayanan, Arvind
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (33)
  • [29] Fold bifurcation identification through scientific machine learning
    Habib, Giuseppe
    Horvath, Adam
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [30] Automated Machine Learning for Information Retrieval in Scientific Articles
    Rakhshani, Hojjat
    Latard, Bastien
    Brevilliers, Mathieu
    Weber, Jonathan
    Lepagnot, Julien
    Forestier, Germain
    Hassenforder, Michel
    Idoumghar, Lhassane
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,