Enabling scientific machine learning in MOOSE using Libtorch

被引:0
|
作者
German, Peter [1 ]
Yushu, Dewen [2 ]
机构
[1] Idaho Natl Lab, Computat Frameworks Dept, Idaho Falls, ID 83415 USA
[2] Idaho Natl Lab, Computat Mech & Mat Dept, Idaho Falls, ID 83415 USA
关键词
MOOSE; Libtorch; Scientific machine learning; Reinforcement learning;
D O I
10.1016/j.softx.2023.101489
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A neural-network-based machine learning interface has been developed for the Multiphysics Object-Oriented Simulation Environment (MOOSE). The interface relies on Libtorch, the C++ front-end of PyTorch, and enables an online interaction between modern machine learning algorithms and all the existing simulation, modeling, and analysis processes available in MOOSE. New capabilities in MOOSE include the native generation and training of artificial neural networks together with options to load pretrained neural networks in TorchScript format. Furthermore, the MOOSE stochastic tools module (MOOSE-STM) has been enhanced with neural network-based surrogate and reduced-order model generation options for efficient stochastic analyses. Lastly, a reinforcement learning capability has been added to MOOSE-STM for the interactive control and optimization of complex multiphysics problems.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] MOOSE: Enabling massively parallel multiphysics simulation
    Permann, Cody J.
    Gaston, Derek R.
    Andrs, David
    Carlsen, Robert W.
    Kong, Fande
    Lindsay, Alexander D.
    Miller, Jason M.
    Peterson, John W.
    Slaughter, Andrew E.
    Stogner, Roy H.
    Martineau, Richard C.
    SOFTWAREX, 2020, 11
  • [22] Using scientific machine learning for experimental bifurcation analysis of dynamic systems
    Beregi, Sandor
    Barton, David A. W.
    Rezgui, Djamel
    Neild, Simon
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184
  • [23] Integrating scientific knowledge into machine learning using interactive decision trees
    Sarailidis, Georgios
    Wagener, Thorsten
    Pianosi, Francesca
    COMPUTERS & GEOSCIENCES, 2023, 170
  • [24] Machine Learning and the Future of Scientific Explanation
    Boge, Florian J.
    Poznic, Michael
    JOURNAL FOR GENERAL PHILOSOPHY OF SCIENCE, 2021, 52 (01) : 171 - 176
  • [25] Research on Machine Learning for Scientific Discovery
    Meng X.-F.
    Hao X.-L.
    Ma C.-H.
    Yang C.
    Maoliniyazi A.-S.
    Wu C.
    Wei J.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (05): : 877 - 895
  • [26] The role of machine learning in scientific workflows
    Deelman, Ewa
    Mandal, Anirban
    Jiang, Ming
    Sakellariou, Rizos
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (06): : 1128 - 1139
  • [27] SCIENTIFIC MACHINE LEARNING TAKES OFF
    Fairen-Jimenez, David
    ADVANCED MATERIALS & PROCESSES, 2020, 178 (06): : 7 - 7
  • [28] Adversarial Controls for Scientific Machine Learning
    Chuang, Kangway V.
    Keiser, Michael J.
    ACS CHEMICAL BIOLOGY, 2018, 13 (10) : 2819 - 2821
  • [29] Machine learning and big scientific data
    Hey, Tony
    Butler, Keith
    Jackson, Sam
    Thiyagalingam, Jeyarajan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2166):
  • [30] Machine Learning and the Future of Scientific Explanation
    Florian J. Boge
    Michael Poznic
    Journal for General Philosophy of Science, 2021, 52 : 171 - 176