Geometry and arithmetic of semi-arithmetic Fuchsian groups

被引:0
|
作者
Belolipetsky, Mikhail [1 ]
Cosac, Gregory [2 ]
Doria, Cayo [3 ]
Paula, Gisele Teixeira [4 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Dept Matemat Aplicada, IME, Sao Paulo, SP, Brazil
[3] Univ Fed Sergipe, Dept Matemat, Av Marcelo Deda Chagas S-N, Sao Cristovao, Brazil
[4] UFPR, Ctr Politecn, Av Cel Francisco H Santos, BR-80060000 Curitiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
MODULAR EMBEDDINGS; RIGIDITY;
D O I
10.1112/jlms.70087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Semi-arithmetic Fuchsian groups is a wide class of discrete groups of isometries of the hyperbolic plane which includes arithmetic Fuchsian groups, hyperbolic triangle groups, groups admitting a modular embedding, and others. We introduce a new geometric invariant of a semi-arithmetic group called stretch. Its definition is based on the notion of the Riemannian center of mass developed by Karcher and collaborators. We show that there exist only finitely many conjugacy classes of semi-arithmetic groups with bounded arithmetic dimension, stretch and coarea. The proof of this result uses the arithmetic Margulis lemma. We also show that when stretch is not bounded there exist infinite sequences of such groups.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] ARITHMETIC AND GEOMETRY OF FUTURE
    KANE, J
    VERTINSKY, IB
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 1975, 8 (02) : 115 - 130
  • [42] Supergeometry and arithmetic geometry
    Schwarz, A.
    Shapiro, I.
    NUCLEAR PHYSICS B, 2006, 756 (03) : 207 - 218
  • [43] GEOMETRY OF ARITHMETIC GRAPHS
    GRIGORYAN, YG
    CYBERNETICS, 1982, 18 (04): : 403 - 407
  • [44] Geometry of the arithmetic site
    Connes, Alain
    Consani, Caterina
    ADVANCES IN MATHEMATICS, 2016, 291 : 274 - 329
  • [45] Noncommutative Geometry and Arithmetic
    Marcolli, Matilde
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 2057 - 2077
  • [46] Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics
    Bandman, Tatiana
    Garion, Shelly
    Kunyavski, Boris
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (02): : 175 - 211
  • [47] Reidemeister-Schreier rewriting process for matching uniform signal constellations to quotient groups of arithmetic Fuchsian groups
    Campos, Daniel Silva
    Palazzo Jr, Reginaldo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [48] Construction of Signal Sets From Quotient Rings of the Quaternion Orders Associated With Arithmetic Fuchsian Groups
    de Oliveira Quilles Queiroz, Catia Regina
    Palazzo, Reginaldo, Jr.
    IEEE ACCESS, 2020, 8 (08): : 196050 - 196061
  • [49] Billiards, heights, and the arithmetic of non-arithmetic groups
    McMullen, Curtis T.
    INVENTIONES MATHEMATICAE, 2022, 228 (03) : 1309 - 1351
  • [50] An algorithm to construct arithmetic Fuchsian groups derived from quaternion algebras and the corresponding hyperbolic lattices
    de Oliveira Benedito, Cintya Wink
    Palazzo, Reginaldo, Jr.
    Interlando, J. Carmelo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (05) : 1902 - 1923