Geometry and arithmetic of semi-arithmetic Fuchsian groups

被引:0
|
作者
Belolipetsky, Mikhail [1 ]
Cosac, Gregory [2 ]
Doria, Cayo [3 ]
Paula, Gisele Teixeira [4 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Dept Matemat Aplicada, IME, Sao Paulo, SP, Brazil
[3] Univ Fed Sergipe, Dept Matemat, Av Marcelo Deda Chagas S-N, Sao Cristovao, Brazil
[4] UFPR, Ctr Politecn, Av Cel Francisco H Santos, BR-80060000 Curitiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
MODULAR EMBEDDINGS; RIGIDITY;
D O I
10.1112/jlms.70087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Semi-arithmetic Fuchsian groups is a wide class of discrete groups of isometries of the hyperbolic plane which includes arithmetic Fuchsian groups, hyperbolic triangle groups, groups admitting a modular embedding, and others. We introduce a new geometric invariant of a semi-arithmetic group called stretch. Its definition is based on the notion of the Riemannian center of mass developed by Karcher and collaborators. We show that there exist only finitely many conjugacy classes of semi-arithmetic groups with bounded arithmetic dimension, stretch and coarea. The proof of this result uses the arithmetic Margulis lemma. We also show that when stretch is not bounded there exist infinite sequences of such groups.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Torsion in maximal arithmetic Fuchsian groups
    Maclachlan, C.
    COMBINATORIAL GROUP THEORY, DISCRETE GROUPS, AND NUMBER THEORY, 2006, 421 : 213 - 225
  • [12] On fundamental domains of arithmetic Fuchsian groups
    Johansson, S
    MATHEMATICS OF COMPUTATION, 2000, 69 (229) : 339 - 349
  • [13] EQUIVALENT TRACE SETS FOR ARITHMETIC FUCHSIAN GROUPS
    Lakeland, Grant S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 445 - 459
  • [14] Derived Arithmetic Fuchsian Groups of Genus Two
    Macasieb, Melissa L.
    EXPERIMENTAL MATHEMATICS, 2008, 17 (03) : 347 - 369
  • [15] A description of the arithmetic Fuchsian groups with signature (2;-)
    Ackermann, Peter
    Combinatorial Group Theory, Discrete Groups, and Number Theory, 2006, 421 : 1 - 13
  • [16] SMALL GENERATORS OF COCOMPACT ARITHMETIC FUCHSIAN GROUPS
    Chu, Michelle
    Li, Han
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5121 - 5127
  • [17] 2-GENERATOR ARITHMETIC FUCHSIAN-GROUPS
    MACLACHLAN, C
    ROSENBERGER, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 93 (MAY) : 383 - 391
  • [18] Arithmetic and geometry of the Hecke groups
    Lang, Cheng Lien
    Lang, Mong Lung
    JOURNAL OF ALGEBRA, 2016, 460 : 392 - 417
  • [19] On the Arithmetic Fuchsian Groups Derived from Quaternion Orders
    Vieira, Vandenberg Lopes
    Palazzo, Reginaldo, Jr.
    Faria, Mercio Botelho
    PROCEEDINGS OF THE IEEE INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, VOLS 1 AND 2, 2006, : 586 - +
  • [20] Arithmetic fuchsian groups and space time block codes
    Carvalho, E. D.
    Andrade, A. A.
    Palazzo, R., Jr.
    Vieira Filho, J.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 485 - 498