REMARKS ON SOFT BALL PACKINGS IN DIMENSIONS 2 AND 3

被引:0
|
作者
Bezdek, Karoly [1 ,2 ]
Langi, Zsolt [3 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[2] Univ Pannonia, Dept Math, Veszprem, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Dept Algebra & Geometry, Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
soft packing; soft parameter; soft density; soft lattice packing; FCC lattice; Voronoi decomposition; Delaunay; decomposition; refined Moln & aacute; r decomposition; DOMAINS;
D O I
10.1556/012.2024.04318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study translative arrangements of centrally symmetric convex domains in the plane (resp., of congruent balls in the Euclidean 3-space) that neither pack nor cover. We define their soft density depending on a soft parameter and prove that the largest soft density for soft translative packings of a centrally symmetric convex domain with 3-fold rotational symmetry and given soft parameter is obtained for a proper soft lattice packing. Furthermore, we show that among the soft lattice packings of congruent soft balls with given soft parameter the soft density is locally maximal for the corresponding face centered cubic (FCC) lattice.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [41] CLASSICAL AND GENERALIZED SYMMETRY IN SYMBOLICS OF THE CLOSEST BALL PACKINGS
    ZALUTSKY, II
    KRISTALLOGRAFIYA, 1985, 30 (06): : 1045 - 1049
  • [42] A lower bound for the mean width of Voronoi polyhedra of unit ball packings in E3
    Bezdek, K
    ARCHIV DER MATHEMATIK, 2000, 74 (05) : 392 - 400
  • [43] A lower bound for the mean width of Voronoi polyhedra of unit ball packings in E3
    K. Bezdek
    Archiv der Mathematik, 2000, 74 : 392 - 400
  • [44] Soft integrals and soft anomalous dimensions at N3LO and beyond
    Claude Duhr
    Bernhard Mistlberger
    Gherardo Vita
    Journal of High Energy Physics, 2022
  • [45] The Stress Distribution in Polydisperse Granular Packings in Two Dimensions
    Sun Qi-Cheng
    Zhang Guo-Hua
    Jin Feng
    CHINESE PHYSICS LETTERS, 2013, 30 (02)
  • [46] Soft integrals and soft anomalous dimensions at N3LO and beyond
    Duhr, Claude
    Mistlberger, Bernhard
    Vita, Gherardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [47] SHRINKAGE PROPERTIES AND SIDE PRESSURE OF SOFT PACKINGS
    BUBNOV, YI
    RUSSIAN ENGINEERING JOURNAL, 1973, 53 (08): : 35 - 37
  • [48] ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS
    Jenssen, Matthew
    Joos, Felix
    Perkins, Will
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [49] SOME REMARKS ON UNITS AND DIMENSIONS
    POST, EJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (12): : 1190 - &
  • [50] Remarks on dimensions of triangulated categories
    Aihara, Takuma
    Takahashi, Ryo
    JOURNAL OF ALGEBRA, 2019, 521 : 235 - 246