ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS

被引:12
|
作者
Jenssen, Matthew [1 ]
Joos, Felix [2 ]
Perkins, Will [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
来源
基金
英国工程与自然科学研究理事会;
关键词
LOWER BOUNDS; DENSITY;
D O I
10.1017/fms.2018.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a lower bound on the entropy of sphere packings of R-d of density Theta (d . 2(-d)). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the Omega(d . 2(-d)) lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least (1 + o(d)(1)) log(2/root 3)d . 2(-d) when the ratio of the fugacity parameter to the volume covered by a single sphere is at least 3(-d/2). Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance. and Venkatesh.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Estimates of the optimal density of sphere packings in high dimensions
    Scardicchio, A.
    Stillinger, F. H.
    Torquato, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [2] Jamming in hard sphere and disk packings
    Donev, Aleksandar
    Torquato, Salvatore
    Stillinger, Frank H.
    Connelly, Robert
    Journal of Applied Physics, 1600, 95 (03): : 989 - 999
  • [3] Hard sphere packings within cylinders
    Fu, Lin
    Steinhardt, William
    Zhao, Hao
    Socolar, Joshua E. S.
    Charbonneau, Patrick
    SOFT MATTER, 2016, 12 (09) : 2505 - 2514
  • [4] Jamming in hard sphere and disk packings
    Donev, A
    Torquato, S
    Stillinger, FH
    Connelly, R
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) : 989 - 999
  • [5] Some new sphere-packings in high dimensions, and all the best sphere-packings in low ones.
    Conway, JH
    CURRENT DEVELOPMENTS IN MATHEMATICS 1999, 1999, : 47 - 53
  • [6] Dense packings of geodesic hard ellipses on a sphere
    Gnidovec, Andraz
    Bozic, Anze
    Copar, Simon
    SOFT MATTER, 2022, 18 (39) : 7670 - 7678
  • [7] Structural Properties of Dense Hard Sphere Packings
    Klumov, Boris A.
    Jin, Yuliang
    Makse, Hernan A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (36): : 10761 - 10766
  • [8] Order and disorder in hard-sphere packings
    Richard, P
    Gervois, A
    Oger, L
    Troadec, JP
    EUROPHYSICS LETTERS, 1999, 48 (04): : 415 - 420
  • [9] REMARKS ON THE DENSITY OF SPHERE PACKINGS IN 3 DIMENSIONS
    HALES, TC
    COMBINATORICA, 1993, 13 (02) : 181 - 197
  • [10] Structural properties of dense hard sphere packings
    Klumov, B. A.
    Khrapak, S. A.
    Morfill, G. E.
    PHYSICAL REVIEW B, 2011, 83 (18)