REMARKS ON THE DENSITY OF SPHERE PACKINGS IN 3 DIMENSIONS

被引:11
|
作者
HALES, TC [1 ]
机构
[1] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60637
关键词
AMS subject classification code (1991): 05B40; 52C17;
D O I
10.1007/BF01303203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows how the density of sphere packings of spheres of equal radius may be studied using the Delaunay decomposition. Using this decomposition, a local notion of density for sphere packings in R3 is defined. Conjecturally this approach should yield a bound of 0.740873... on sphere packings in R3, and a small perturbation of this approach should yield the bound of pi/square-root 18. The face-centered-cubic and hexagonal-close-packings provide local maxima (in a strong sense defined below) to the function which associates to every saturated sphere packing in R3 its density. The local measure of density coincides with the actual density for the face-centered cubic and hexagonal-close-packings.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 50 条
  • [1] Estimates of the optimal density of sphere packings in high dimensions
    Scardicchio, A.
    Stillinger, F. H.
    Torquato, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
  • [2] REMARKS ON SOFT BALL PACKINGS IN DIMENSIONS 2 AND 3
    Bezdek, Karoly
    Langi, Zsolt
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (03) : 251 - 261
  • [3] ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS
    Jenssen, Matthew
    Joos, Felix
    Perkins, Will
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [4] On the density of homogeneous sphere packings
    Koch, E
    Sowa, H
    Fischer, W
    ACTA CRYSTALLOGRAPHICA SECTION A, 2005, 61 : 426 - 434
  • [5] On sphere packings of arbitrarily low density
    Fischer, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (07): : 657 - 662
  • [6] Confined disordered jammed sphere packings in three dimensions
    Chen, Duyu
    Torquato, Salvatore
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [7] NEW SPHERE PACKINGS IN DIMENSIONS 9-15
    LEECH, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (05) : 1006 - &
  • [8] WHAT ARE ALL THE BEST SPHERE PACKINGS IN LOW DIMENSIONS
    CONWAY, JH
    SLOANE, NJA
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) : 383 - 403
  • [9] Nonuniversality of density and disorder in jammed sphere packings
    Jiao, Yang
    Stillinger, Frank H.
    Torquato, Salvatore
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
  • [10] Some new sphere-packings in high dimensions, and all the best sphere-packings in low ones.
    Conway, JH
    CURRENT DEVELOPMENTS IN MATHEMATICS 1999, 1999, : 47 - 53