机构:
Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Dept Algebra & Geometry, Budapest, HungaryUniv Calgary, Dept Math & Stat, Calgary, AB, Canada
Langi, Zsolt
[3
]
机构:
[1] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[2] Univ Pannonia, Dept Math, Veszprem, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Dept Algebra & Geometry, Budapest, Hungary
We study translative arrangements of centrally symmetric convex domains in the plane (resp., of congruent balls in the Euclidean 3-space) that neither pack nor cover. We define their soft density depending on a soft parameter and prove that the largest soft density for soft translative packings of a centrally symmetric convex domain with 3-fold rotational symmetry and given soft parameter is obtained for a proper soft lattice packing. Furthermore, we show that among the soft lattice packings of congruent soft balls with given soft parameter the soft density is locally maximal for the corresponding face centered cubic (FCC) lattice.
机构:
Renmin Univ China, Sch Math, Beijing 100872, Peoples R ChinaRenmin Univ China, Sch Math, Beijing 100872, Peoples R China
Ge, Huabin
Jiang, Wenshuai
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Peoples R ChinaRenmin Univ China, Sch Math, Beijing 100872, Peoples R China
Jiang, Wenshuai
Shen, Liangming
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
Minist Educ, Key Lab Math Informat Behav Semant, Beijing 100191, Peoples R ChinaRenmin Univ China, Sch Math, Beijing 100872, Peoples R China