REMARKS ON SOFT BALL PACKINGS IN DIMENSIONS 2 AND 3

被引:0
|
作者
Bezdek, Karoly [1 ,2 ]
Langi, Zsolt [3 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
[2] Univ Pannonia, Dept Math, Veszprem, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Dept Algebra & Geometry, Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
soft packing; soft parameter; soft density; soft lattice packing; FCC lattice; Voronoi decomposition; Delaunay; decomposition; refined Moln & aacute; r decomposition; DOMAINS;
D O I
10.1556/012.2024.04318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study translative arrangements of centrally symmetric convex domains in the plane (resp., of congruent balls in the Euclidean 3-space) that neither pack nor cover. We define their soft density depending on a soft parameter and prove that the largest soft density for soft translative packings of a centrally symmetric convex domain with 3-fold rotational symmetry and given soft parameter is obtained for a proper soft lattice packing. Furthermore, we show that among the soft lattice packings of congruent soft balls with given soft parameter the soft density is locally maximal for the corresponding face centered cubic (FCC) lattice.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [31] ANALYSIS OF BILLIARD BALL COLLISIONS IN 2 DIMENSIONS - COMMENT
    ONODA, GY
    AMERICAN JOURNAL OF PHYSICS, 1989, 57 (05) : 476 - 478
  • [32] Creep Control in Soft Particle Packings
    Dijksman, Joshua A.
    Mullin, Tom
    PHYSICAL REVIEW LETTERS, 2022, 128 (23)
  • [33] Remarks on the Dirac oscillator in (2+1) dimensions
    Andrade, Fabiano M.
    Silva, Edilberto O.
    EPL, 2014, 108 (03)
  • [34] ALUMINIUM SOFT PACKINGS IN MANY VARIATIONS
    KESPELHE.C
    METALL, 1971, 25 (12): : 1402 - &
  • [35] Slow creep in soft granular packings
    Srivastava, Ishan
    Fisher, Timothy S.
    SOFT MATTER, 2017, 13 (18) : 3411 - 3421
  • [36] New dense superball packings in three dimensions
    Dostert, Maria
    Vallentin, Frank
    ADVANCES IN GEOMETRY, 2020, 20 (04) : 473 - 482
  • [37] Spherical Lagrangians via ball packings and symplectic cutting
    Matthew Strom Borman
    Tian-Jun Li
    Weiwei Wu
    Selecta Mathematica, 2014, 20 : 261 - 283
  • [38] Spherical Lagrangians via ball packings and symplectic cutting
    Borman, Matthew Strom
    Li, Tian-Jun
    Wu, Weiwei
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 261 - 283
  • [39] Lorentzian Coxeter systems and Boyd–Maxwell ball packings
    Hao Chen
    Jean-Philippe Labbé
    Geometriae Dedicata, 2015, 174 : 43 - 73
  • [40] Maximal Ball Packings of Symplectic-Toric Manifolds
    Pelayo, Alvaro
    Schmidt, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008