Classical limit of genus two DAHA

被引:0
|
作者
Arthamonov, S. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
MAPPING CLASS GROUP; SURFACE; REPRESENTATIONS; ALGEBRAS; GRAPHS;
D O I
10.1007/s00029-024-01009-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that one-parameter deformation Aq,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q,t}$$\end{document} of the skein algebra Skq(Sigma 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sk_q(\Sigma _2)$$\end{document} of a genus two surface suggested in Arthamonov and Shakirov (Sel Math New Ser 25(2):17, 2019) is flat. We solve the word problem in the algebra and describe monomial basis. In addition, we calculate the classical limit Aq=1,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=1,t}$$\end{document} of the algebra and prove that it is a one-parameter flat Poisson deformation of the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of an SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb C)$$\end{document}-character variety of a genus two surface. As a byproduct, we obtain a remarkably simple presentation in terms of generators and relations for the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of a genus two character variety.
引用
收藏
页数:62
相关论文
共 50 条
  • [41] THERMOSTATIC EQUILIBRIUM IN THE CLASSICAL LIMIT
    BEGHIAN, LE
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (12): : 1437 - 1444
  • [42] An essentially singular classical limit
    Stalker, J
    ADVANCES IN MATHEMATICS, 1999, 143 (02) : 349 - 356
  • [43] CLASSICAL LIMIT FOR WEYL QUANTIZATION
    ANTONETS, MA
    LETTERS IN MATHEMATICAL PHYSICS, 1978, 2 (03) : 241 - 245
  • [44] CLASSICAL LIMIT OF QUANTUM ELECTRODYNAMICS
    BIALYNICKIBIRULA, I
    ACTA PHYSICA AUSTRIACA, 1977, : 111 - 151
  • [45] ON THE CLASSICAL LIMIT OF QUANTUM ELECTRODYNAMICS
    STENHOLM, S
    ANNALES DE PHYSIQUE, 1985, 10 (06) : 817 - 823
  • [46] CLASSICAL LIMIT OF HEISENBERG MODEL
    MANSON, M
    PHYSICAL REVIEW B, 1975, 12 (01): : 400 - 404
  • [47] CLASSICAL LIMIT FOR SCATTERING IN LIQUIDS
    REVZEN, M
    RON, A
    TRAINOR, LEH
    PHYSICA A, 1979, 99 (1-2): : 365 - 368
  • [48] ON THE CLASSICAL LIMIT OF THE SCHRODINGER EQUATION
    Bardos, Claude
    Golse, Francois
    Markowich, Peter
    Paul, Thierry
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5689 - 5709
  • [49] Gibbs states and their classical limit
    van de Ven, Christiaan J. F.
    REVIEWS IN MATHEMATICAL PHYSICS, 2024, 36 (05)
  • [50] CLASSICAL LIMIT OF KEPLER PROBLEM
    MOSTOWSKI, J
    LETTERS IN MATHEMATICAL PHYSICS, 1977, 2 (01) : 1 - 5