Classical limit of genus two DAHA

被引:0
|
作者
Arthamonov, S. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
MAPPING CLASS GROUP; SURFACE; REPRESENTATIONS; ALGEBRAS; GRAPHS;
D O I
10.1007/s00029-024-01009-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that one-parameter deformation Aq,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q,t}$$\end{document} of the skein algebra Skq(Sigma 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sk_q(\Sigma _2)$$\end{document} of a genus two surface suggested in Arthamonov and Shakirov (Sel Math New Ser 25(2):17, 2019) is flat. We solve the word problem in the algebra and describe monomial basis. In addition, we calculate the classical limit Aq=1,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=1,t}$$\end{document} of the algebra and prove that it is a one-parameter flat Poisson deformation of the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of an SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb C)$$\end{document}-character variety of a genus two surface. As a byproduct, we obtain a remarkably simple presentation in terms of generators and relations for the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of a genus two character variety.
引用
收藏
页数:62
相关论文
共 50 条
  • [31] Energy of a plasma in the classical limit
    Opher, M
    Opher, R
    PHYSICAL REVIEW LETTERS, 1999, 82 (24) : 4835 - 4838
  • [32] CLASSICAL LIMIT OF ENTANGLED CORRELATIONS
    WODKIEWICZ, K
    ACTA PHYSICA POLONICA A, 1994, 86 (1-2) : 223 - 234
  • [33] CLASSICAL LIMIT OF MOLECULAR ROTATIONS
    MOSTOWSKI, J
    PHYSICS LETTERS A, 1976, 56 (05) : 369 - 370
  • [34] Classical rhetoric and a limit to persuasion
    Christensen, Anne-Kathrine Kjaer
    Hasle, Per F. V.
    PERSUASIVE TECHNOLOGY, 2007, 4744 : 307 - 310
  • [35] INTERFERENCES IN PHOTODISSOCIATION IN THE CLASSICAL LIMIT
    LEE, CW
    PHYSICAL REVIEW A, 1988, 37 (07): : 2467 - 2474
  • [36] CLASSICAL LIMIT OF WEYL QUANTIZATION
    ANTONETS, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1979, 38 (03) : 219 - 228
  • [37] Casimir effect: The classical limit
    Feinberg, J
    Mann, A
    Revzen, M
    ANNALS OF PHYSICS, 2001, 288 (01) : 103 - 136
  • [38] The Classical-Quantum Limit
    Layton, Isaac
    Oppenheim, Jonathan
    PRX QUANTUM, 2024, 5 (02):
  • [39] Persistent entanglement in the classical limit
    Everitt, MJ
    Clark, TD
    Stiffell, PB
    Ralph, JF
    Bulsara, AR
    Harland, CJ
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [40] Bohmian measures and their classical limit
    Markowich, Peter
    Paul, Thierry
    Sparber, Christof
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1542 - 1576