Classical limit of genus two DAHA

被引:0
|
作者
Arthamonov, S. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
MAPPING CLASS GROUP; SURFACE; REPRESENTATIONS; ALGEBRAS; GRAPHS;
D O I
10.1007/s00029-024-01009-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that one-parameter deformation Aq,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q,t}$$\end{document} of the skein algebra Skq(Sigma 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sk_q(\Sigma _2)$$\end{document} of a genus two surface suggested in Arthamonov and Shakirov (Sel Math New Ser 25(2):17, 2019) is flat. We solve the word problem in the algebra and describe monomial basis. In addition, we calculate the classical limit Aq=1,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=1,t}$$\end{document} of the algebra and prove that it is a one-parameter flat Poisson deformation of the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of an SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb C)$$\end{document}-character variety of a genus two surface. As a byproduct, we obtain a remarkably simple presentation in terms of generators and relations for the coordinate ring Aq=t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal A_{q=t=1}$$\end{document} of a genus two character variety.
引用
收藏
页数:62
相关论文
共 50 条