YOLOv8-LCNET: An Improved YOLOv8 Automatic Crater Detection Algorithm and Application in the Chang'e-6 Landing Area

被引:0
|
作者
Nan, Jing [1 ,2 ]
Wang, Yexin [1 ]
Di, Kaichang [1 ,3 ]
Xie, Bin [1 ,2 ]
Zhao, Chenxu [1 ,2 ]
Wang, Biao [1 ,2 ]
Sun, Shujuan [4 ]
Deng, Xiangjin [5 ]
Zhang, Hong [5 ]
Sheng, Ruiqing [5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Comparat Planetol, Hefei 230026, Peoples R China
[4] Chengdu Univ, Sch Architecture & Civil Engn, Chengdu 610106, Peoples R China
[5] China Acad Space Technol, Beijing Inst Spacecraft Syst Engn, Beijing 100094, Peoples R China
关键词
lunar surface; CE-6 landing area; digital orthophoto map; impact crater; automatic detection; You Only Look Once-v8; MARTIAN IMPACT CRATERS; LUNAR;
D O I
10.3390/s25010243
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed. The model first incorporated a Partial Self-Attention (PSA) mechanism at the end of the Backbone, allowing the model to enhance global perception and reduce missed detections with a low computational cost. Then, a Gather-and-Distribute mechanism (GD) was integrated into the Neck, enabling the model to fully fuse multi-level feature information and capture global information, enhancing the model's ability to detect impact craters of various sizes. The experimental results showed that the YOLOv8-LCNET model performs well in the impact crater detection task, achieving 87.7% Precision, 84.3% Recall, and 92% AP, which were 24.7%, 32.7%, and 37.3% higher than the original YOLOv8 model. The improved YOLOv8 model was then used for automatic crater detection in the CE-6 landing area (246 km x 135 km, with a DOM resolution of 3 m/pixel), resulting in a total of 770,671 craters, ranging from 13 m to 19,882 m in diameter. The analysis of this impact crater catalogue has provided critical support for landing site selection and characterization of the CE-6 mission and lays the foundation for future lunar geological studies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Improved YOLOv8 Object Detection Algorithm for Traffic Sign Target
    Tian, Peng
    Mao, Li
    Computer Engineering and Applications, 2024, 60 (08) : 202 - 212
  • [42] Improved YOLOv8 Small Target Detection Algorithm in Aerial Images
    Fu, Jinyi
    Zhang, Zijia
    Sun, Wei
    Zou, Kaixin
    Computer Engineering and Applications, 2024, 60 (06) : 100 - 109
  • [43] Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8
    Zhang, Tianxin
    Wang, Fuwei
    Wang, Weimin
    Zhao, Qihao
    Ning, Weijun
    Wu, Haodong
    IEEE ACCESS, 2024, 12 : 117354 - 117362
  • [44] An improved YOLOv8 algorithm for small object detection in autonomous driving
    Cao, Jie
    Zhang, Tong
    Hou, Liang
    Nan, Ning
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [45] A Glove-Wearing Detection Algorithm Based on Improved YOLOv8
    Li, Shichu
    Huang, Huiping
    Meng, Xiangyin
    Wang, Mushuai
    Li, Yang
    Xie, Lei
    Distante, Cosimo
    SENSORS, 2023, 23 (24)
  • [46] Concrete Surface Crack Detection Algorithm Based on Improved YOLOv8
    Dong, Xuwei
    Liu, Yang
    Dai, Jinpeng
    SENSORS, 2024, 24 (16)
  • [47] Vehicle Detection Algorithm Based on Improved YOLOv8 in Traffic Surveillance
    Zhou, Fei
    Guo, Dudu
    Wang, Yang
    Wang, Qingqing
    Qin, Yin
    Yang, Zhuomin
    He, Haijun
    Computer Engineering and Applications, 2024, 60 (06)
  • [48] YOLOv8s-SNC: An Improved Safety-Helmet-Wearing Detection Algorithm Based on YOLOv8
    Han, Daguang
    Ying, Chunli
    Tian, Zhenhai
    Dong, Yanjie
    Chen, Liyuan
    Wu, Xuguang
    Jiang, Zhiwen
    BUILDINGS, 2024, 14 (12)
  • [49] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [50] An Oracle Bone Inscriptions Detection Algorithm Based on Improved YOLOv8
    Zhen, Qianqian
    Wu, Liang
    Liu, Guoying
    ALGORITHMS, 2024, 17 (05)