Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8

被引:4
|
作者
Zhang, Tianxin [1 ]
Wang, Fuwei [1 ]
Wang, Weimin [1 ]
Zhao, Qihao [1 ]
Ning, Weijun [1 ]
Wu, Haodong [1 ]
机构
[1] Liaoning Petrochem Univ, Sch Artificial Intelligence & Software, Fushun 113005, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Accuracy; YOLO; Detection algorithms; Convolutional neural networks; Forestry; Attention mechanisms; Fire detection; YOLOv8; EMA; PAN-Bag;
D O I
10.1109/ACCESS.2024.3448608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fire has consistently posed a significant disaster risk worldwide. Current fire detection methods primarily rely on traditional physical sensors such as light, smoke, and temperature detectors, which often struggle in complex environments. The susceptibility of existing fire detection technologies to background interference frequently results in false alarms, missed detections, and low detection accuracy. To address these issues, this paper proposes a fire detection algorithm based on an improved YOLOv8 model. First, to enhance the detection capabilities for large-scale fire and smoke targets, a large target detection head is added to the backbone of the YOLOv8 model. This modification enhances the network's receptive field, allowing it to capture a broader range of contextual information and identify fires over extensive areas. Secondly, an efficient multi-scale attention mechanism, EMA (Efficient Multi-Scale Attention Module), based on cross-space learning is integrated into the FPN (Feature Pyramid Network) part of the model. This mechanism highlights target features while suppressing background interference. Additionally, a PAN-Bag (Path Aggregation Network Bag) structure is proposed to help the model more accurately detect objects such as fire and smoke, which have uneven feature distributions and variable morphologies. With these improvements, we introduce the YOLOv8-FEP algorithm, which offers higher detection accuracy. Experimental results demonstrate that the YOLOv8-FEP algorithm improves the mAP by 3.1% and the accuracy by 5.8% compared to the original YOLOv8 algorithm, proving the effectiveness of the enhanced algorithm.
引用
收藏
页码:117354 / 117362
页数:9
相关论文
共 50 条
  • [1] Fire and smoke detection algorithm based on improved YOLOv8
    Deng, Li
    Zhou, Jin
    Liu, Quanyi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2025, 65 (04): : 681 - 689
  • [2] Research on Smoke and Fire Target Detection with Tracking Algorithm Based on YOLOv8 and DeepSORT
    Zang, Hengxu
    Hu, Ying
    Wang, Yutong
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 571 - 576
  • [3] YOLOGX: an improved forest fire detection algorithm based on YOLOv8
    Li, Caixiong
    Du, Yue
    Zhang, Xing
    Wu, Peng
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2025, 12
  • [4] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [5] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67
  • [6] A Fire and Smoke Detection Model Based on YOLOv8 Improvement
    Gao, Pengcheng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 179 - 190
  • [7] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):
  • [8] FG-YOLO: an improved YOLOv8 algorithm for real-time fire and smoke detection
    Yao, Jiale
    Lei, Juyang
    Zhou, Jun
    Liu, Chaofeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [9] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23
  • [10] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    Journal of Real-Time Image Processing, 2024, 21