Research on Fire Smoke Detection Algorithm Based on Improved YOLOv8

被引:4
|
作者
Zhang, Tianxin [1 ]
Wang, Fuwei [1 ]
Wang, Weimin [1 ]
Zhao, Qihao [1 ]
Ning, Weijun [1 ]
Wu, Haodong [1 ]
机构
[1] Liaoning Petrochem Univ, Sch Artificial Intelligence & Software, Fushun 113005, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Accuracy; YOLO; Detection algorithms; Convolutional neural networks; Forestry; Attention mechanisms; Fire detection; YOLOv8; EMA; PAN-Bag;
D O I
10.1109/ACCESS.2024.3448608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fire has consistently posed a significant disaster risk worldwide. Current fire detection methods primarily rely on traditional physical sensors such as light, smoke, and temperature detectors, which often struggle in complex environments. The susceptibility of existing fire detection technologies to background interference frequently results in false alarms, missed detections, and low detection accuracy. To address these issues, this paper proposes a fire detection algorithm based on an improved YOLOv8 model. First, to enhance the detection capabilities for large-scale fire and smoke targets, a large target detection head is added to the backbone of the YOLOv8 model. This modification enhances the network's receptive field, allowing it to capture a broader range of contextual information and identify fires over extensive areas. Secondly, an efficient multi-scale attention mechanism, EMA (Efficient Multi-Scale Attention Module), based on cross-space learning is integrated into the FPN (Feature Pyramid Network) part of the model. This mechanism highlights target features while suppressing background interference. Additionally, a PAN-Bag (Path Aggregation Network Bag) structure is proposed to help the model more accurately detect objects such as fire and smoke, which have uneven feature distributions and variable morphologies. With these improvements, we introduce the YOLOv8-FEP algorithm, which offers higher detection accuracy. Experimental results demonstrate that the YOLOv8-FEP algorithm improves the mAP by 3.1% and the accuracy by 5.8% compared to the original YOLOv8 algorithm, proving the effectiveness of the enhanced algorithm.
引用
收藏
页码:117354 / 117362
页数:9
相关论文
共 50 条
  • [11] Research on improved YOLOv8 algorithm for insulator defect detection
    Zhang, Lin
    Li, Boqun
    Cui, Yang
    Lai, Yushan
    Gao, Jing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [12] An Improved Fire Detection Algorithm Based on YOLOv8 Integrated with DGIConv, FourBranchAttention and GSIoU
    Zhang, Muxiang
    HighTech and Innovation Journal, 2024, 5 (03): : 677 - 689
  • [13] Ship-Fire Net: An Improved YOLOv8 Algorithm for Ship Fire Detection
    Zhang, Ziyang
    Tan, Lingye
    Tiong, Robert Lee Kong
    SENSORS, 2024, 24 (03)
  • [14] An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images
    Saydirasulovich, Saydirasulov Norkobil
    Mukhiddinov, Mukhriddin
    Djuraev, Oybek
    Abdusalomov, Akmalbek
    Cho, Young-Im
    SENSORS, 2023, 23 (20)
  • [15] Road Object Detection Algorithm Based on Improved YOLOv8
    Peng, Jun
    Li, Chenxi
    Jiang, Aiping
    Mou, Biao
    Lu, Yiyi
    Chen, Wei
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [16] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2025, 95 (3-4) : 235 - 251
  • [17] Helmet detection algorithm based on lightweight improved YOLOv8
    Wang, Maoli
    Qiu, Haitao
    Wang, Jiarui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [18] Blueberry flower detection algorithm based on improved YOLOv8
    Gai, Rongli
    Zhang, Huatian
    Guo, Zhibin
    Kong, Xiangzhou
    Qin, Shan
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 768 - 773
  • [19] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [20] An Improved Liver Disease Detection Based on YOLOv8 Algorithm
    Huang, Junjie
    Li, Caihong
    Yan, Fengjun
    Guo, Yuanchun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 1168 - 1179