YOLOv8-LCNET: An Improved YOLOv8 Automatic Crater Detection Algorithm and Application in the Chang'e-6 Landing Area

被引:0
|
作者
Nan, Jing [1 ,2 ]
Wang, Yexin [1 ]
Di, Kaichang [1 ,3 ]
Xie, Bin [1 ,2 ]
Zhao, Chenxu [1 ,2 ]
Wang, Biao [1 ,2 ]
Sun, Shujuan [4 ]
Deng, Xiangjin [5 ]
Zhang, Hong [5 ]
Sheng, Ruiqing [5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Comparat Planetol, Hefei 230026, Peoples R China
[4] Chengdu Univ, Sch Architecture & Civil Engn, Chengdu 610106, Peoples R China
[5] China Acad Space Technol, Beijing Inst Spacecraft Syst Engn, Beijing 100094, Peoples R China
关键词
lunar surface; CE-6 landing area; digital orthophoto map; impact crater; automatic detection; You Only Look Once-v8; MARTIAN IMPACT CRATERS; LUNAR;
D O I
10.3390/s25010243
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed. The model first incorporated a Partial Self-Attention (PSA) mechanism at the end of the Backbone, allowing the model to enhance global perception and reduce missed detections with a low computational cost. Then, a Gather-and-Distribute mechanism (GD) was integrated into the Neck, enabling the model to fully fuse multi-level feature information and capture global information, enhancing the model's ability to detect impact craters of various sizes. The experimental results showed that the YOLOv8-LCNET model performs well in the impact crater detection task, achieving 87.7% Precision, 84.3% Recall, and 92% AP, which were 24.7%, 32.7%, and 37.3% higher than the original YOLOv8 model. The improved YOLOv8 model was then used for automatic crater detection in the CE-6 landing area (246 km x 135 km, with a DOM resolution of 3 m/pixel), resulting in a total of 770,671 craters, ranging from 13 m to 19,882 m in diameter. The analysis of this impact crater catalogue has provided critical support for landing site selection and characterization of the CE-6 mission and lays the foundation for future lunar geological studies.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Improved Road Defect Detection Algorithm Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Computer Engineering and Applications, 2024, 60 (17) : 179 - 190
  • [22] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [23] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [24] Fire and smoke detection algorithm based on improved YOLOv8
    Deng, Li
    Zhou, Jin
    Liu, Quanyi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2025, 65 (04): : 681 - 689
  • [25] POTATO APPEARANCE DETECTION ALGORITHM BASED ON IMPROVED YOLOv8
    Zhang, Huan
    Liu, Zhen
    Yang, Ranbing
    Pan, Zhiguo
    Su, Zhaoming
    Li, Xinlin
    Liu, Zeyang
    Shi, Chuanmiao
    Wang, Shuai
    Wu, Hongzhu
    INMATEH-AGRICULTURAL ENGINEERING, 2024, 74 (03): : 864 - 874
  • [26] Improved YOLOv8 Algorithm for Water Surface Object Detection
    Wang, Jie
    Zhao, Hong
    SENSORS, 2024, 24 (15)
  • [27] Underwater Object Detection Algorithm Based on an Improved YOLOv8
    Zhang, Fubin
    Cao, Weiye
    Gao, Jian
    Liu, Shubing
    Li, Chenyang
    Song, Kun
    Wang, Hongwei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [28] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [29] Nighttime Vehicle Detection Algorithm Based on Improved YOLOv8
    Huang, Qianqian
    Wei, Mingzhu
    Wang, Xinhua
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 447 - 452
  • [30] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214