Temperley-Lieb Crystals

被引:0
|
作者
Nguyen, Son [1 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
CANONICAL BASES; IRREDUCIBLE REPRESENTATIONS; CHARACTERS; PRODUCTS; POSITIVITY; ALGEBRAS;
D O I
10.1093/imrn/rnaf080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elements of Lusztig's dual canonical bases are Schur-positive when evaluated on (generalized) Jacobi-Trudi matrices. This deep property was proved by Rhoades and Skandera, relying on a result of Haiman, and ultimately on the (proof of) Kazhdan-Lusztig conjecture. For a particularly tractable part of the dual canonical basis, called Temperley-Lieb immanants, we give a generalization of Littlewood-Richardson rule: we provide a combinatorial interpretation for the coefficient of a particular Schur function in the evaluation of a particular Temperley-Lieb immanant on a particular Jacobi-Trudi matrix. For this we introduce shuffle tableaux, and apply Stembridge's axioms to show that certain graphs on shuffle tableaux are type $A$ Kashiwara crystals.
引用
收藏
页数:28
相关论文
共 50 条