Temperley-Lieb Crystals

被引:0
|
作者
Nguyen, Son [1 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
CANONICAL BASES; IRREDUCIBLE REPRESENTATIONS; CHARACTERS; PRODUCTS; POSITIVITY; ALGEBRAS;
D O I
10.1093/imrn/rnaf080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elements of Lusztig's dual canonical bases are Schur-positive when evaluated on (generalized) Jacobi-Trudi matrices. This deep property was proved by Rhoades and Skandera, relying on a result of Haiman, and ultimately on the (proof of) Kazhdan-Lusztig conjecture. For a particularly tractable part of the dual canonical basis, called Temperley-Lieb immanants, we give a generalization of Littlewood-Richardson rule: we provide a combinatorial interpretation for the coefficient of a particular Schur function in the evaluation of a particular Temperley-Lieb immanant on a particular Jacobi-Trudi matrix. For this we introduce shuffle tableaux, and apply Stembridge's axioms to show that certain graphs on shuffle tableaux are type $A$ Kashiwara crystals.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Dual bases in Temperley-Lieb algebras
    Brannan, Michael
    Collins, Benoit
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, 2019, 80 : 43 - 52
  • [32] Fusion and monodromy in the Temperley-Lieb category
    Belletete, Jonathan
    Saint-Aubin, Yvan
    SCIPOST PHYSICS, 2018, 5 (04):
  • [33] On the semisimplicity of cyclotomic temperley-Lieb algebras
    Rui, HB
    Xi, CC
    Yu, WH
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (01) : 83 - 96
  • [34] Murphy bases of generalized Temperley-Lieb algebras
    Martin Härterich
    Archiv der Mathematik, 1999, 72 : 337 - 345
  • [35] Hochschild Cohomology Rings of Temperley-Lieb Algebras
    Li, Huanhuan
    Xu, Yunge
    Chen, Yuan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 613 - 624
  • [36] Combinatorics of injective words for Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 181
  • [37] Representations of the odd affine Temperley-Lieb algebra
    Reznikoff, Sarah A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 83 - 98
  • [38] Exact solutions of graded Temperley-Lieb Hamiltonians
    Lima-Santos, A
    NUCLEAR PHYSICS B, 1998, 522 (03) : 503 - 532
  • [39] The two-boundary Temperley-Lieb algebra
    de Gier, Jan
    Nichols, Alexander
    JOURNAL OF ALGEBRA, 2009, 321 (04) : 1132 - 1167
  • [40] Framization of a Temperley-Lieb algebra of type B
    Flores, M.
    Goundaroulis, D.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)