Temperley-Lieb Crystals

被引:0
|
作者
Nguyen, Son [1 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
CANONICAL BASES; IRREDUCIBLE REPRESENTATIONS; CHARACTERS; PRODUCTS; POSITIVITY; ALGEBRAS;
D O I
10.1093/imrn/rnaf080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elements of Lusztig's dual canonical bases are Schur-positive when evaluated on (generalized) Jacobi-Trudi matrices. This deep property was proved by Rhoades and Skandera, relying on a result of Haiman, and ultimately on the (proof of) Kazhdan-Lusztig conjecture. For a particularly tractable part of the dual canonical basis, called Temperley-Lieb immanants, we give a generalization of Littlewood-Richardson rule: we provide a combinatorial interpretation for the coefficient of a particular Schur function in the evaluation of a particular Temperley-Lieb immanant on a particular Jacobi-Trudi matrix. For this we introduce shuffle tableaux, and apply Stembridge's axioms to show that certain graphs on shuffle tableaux are type $A$ Kashiwara crystals.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Standard Monomials for Temperley-Lieb Algebras
    Kim, SungSoon
    Lee, Dong-il
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04): : 179 - 181
  • [22] REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS
    MARTIN, PP
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (03) : 485 - 503
  • [23] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [24] Dimer representations of the Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    NUCLEAR PHYSICS B, 2015, 890 : 363 - 387
  • [25] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317
  • [26] Ribbon Graphs and Temperley-Lieb Algebra
    Chbili, Nafaa
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 299 - 312
  • [27] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [28] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901
  • [29] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [30] Temperley-Lieb K-matrices
    Lima-Santos, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,