Temperley-Lieb Crystals

被引:0
|
作者
Nguyen, Son [1 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
CANONICAL BASES; IRREDUCIBLE REPRESENTATIONS; CHARACTERS; PRODUCTS; POSITIVITY; ALGEBRAS;
D O I
10.1093/imrn/rnaf080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Elements of Lusztig's dual canonical bases are Schur-positive when evaluated on (generalized) Jacobi-Trudi matrices. This deep property was proved by Rhoades and Skandera, relying on a result of Haiman, and ultimately on the (proof of) Kazhdan-Lusztig conjecture. For a particularly tractable part of the dual canonical basis, called Temperley-Lieb immanants, we give a generalization of Littlewood-Richardson rule: we provide a combinatorial interpretation for the coefficient of a particular Schur function in the evaluation of a particular Temperley-Lieb immanant on a particular Jacobi-Trudi matrix. For this we introduce shuffle tableaux, and apply Stembridge's axioms to show that certain graphs on shuffle tableaux are type $A$ Kashiwara crystals.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models
    Behrend, RE
    Pearce, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (23): : 2833 - 2847
  • [2] Temperley-Lieb immanants
    Rhoades, Brendon
    Skandera, Mark
    ANNALS OF COMBINATORICS, 2005, 9 (04) : 451 - 494
  • [3] Temperley-Lieb Immanants
    Brendon Rhoades
    Mark Skandera
    Annals of Combinatorics, 2005, 9 : 451 - 494
  • [4] On the Temperley-Lieb Model
    Lima-Santos, A.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (05) : 953 - 969
  • [5] Temperley-Lieb stochastic processes
    Pearce, PA
    Rittenberg, V
    de Gier, J
    Nienhuis, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (45): : L661 - L668
  • [6] Entanglement and the Temperley-Lieb category
    Brannan, Michael
    Collins, Benoit
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 27 - 50
  • [7] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [8] Temperley-Lieb Quantum Channels
    Brannan, Michael
    Collins, Benoit
    Lee, Hun Hee
    Youn, Sang-Gyun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 795 - 839
  • [9] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [10] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345