DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability

被引:0
|
作者
Yin, Menglin [1 ]
Qin, Yong [1 ,2 ,3 ,4 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 546300, Peoples R China
[3] Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 546300, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
基金
中国国家自然科学基金;
关键词
Visual SLAM; dynamic scene; YOLOX; K-means plus plus clustering; dynamic probability;
D O I
10.32604/cmc.2024.057460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incorporate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively determining the threshold for extracting dynamic object contours as dynamic points change. This process divides the image into low dynamic, suspicious dynamic, and high dynamic regions. In the tracking thread, the dynamic point removal module assigns dynamic probability weights to the feature points in these regions. Combined with geometric methods, it detects and removes the dynamic points. The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms, providing better pose estimation accuracy and robustness in dynamic environments.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条
  • [41] MOR-SLAM: A New Visual SLAM System for Indoor Dynamic Environments Based on Mask Restoration
    Yao, Chengzhi
    Ding, Lei
    Lan, Yonghong
    MATHEMATICS, 2023, 11 (19)
  • [42] DyGS-SLAM: Realistic Map Reconstruction in Dynamic Scenes Based on Double-Constrained Visual SLAM
    Zhu, Fan
    Zhao, Yifan
    Chen, Ziyu
    Jiang, Chunmao
    Zhu, Hui
    Hu, Xiaoxi
    REMOTE SENSING, 2025, 17 (04)
  • [43] DEG-SLAM: a dynamic visual RGB-D SLAM based on object detection and geometric constraints for degenerate motion
    Pan, Guangen
    Cao, Songyin
    Lv, Shuang
    Yi, Yang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [44] UDS-SLAM: real-time robust visual SLAM based on semantic segmentation in dynamic scenes
    Liu, Jun
    Dong, Junyuan
    Hu, Mingming
    Lu, Xu
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2024, 51 (02): : 206 - 218
  • [45] Visual SLAM Based on Object Detection Network: A Review br
    Peng, Jiansheng
    Chen, Dunhua
    Yang, Qing
    Yang, Chengjun
    Xu, Yong
    Qin, Yong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3209 - 3236
  • [46] Landmark-based Visual SLAM using Object Detection
    Panaretou, Anastasia
    Mastrup, Phillip Bach
    Boukas, Evangelos
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [47] Improved Point-Line Feature Based Visual SLAM Method for Indoor Scenes
    Wang, Runzhi
    Di, Kaichang
    Wan, Wenhui
    Wang, Yongkang
    SENSORS, 2018, 18 (10)
  • [48] Manhattan constraint-based multiple feature visual SLAM approach for indoor scenes
    Sun X.
    Gong G.
    Chen M.
    Cheng H.
    Guo X.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2023, 31 (09): : 890 - 899
  • [49] Robust Visual SLAM Algorithm for Dynamic Indoor Environments
    Fang, Lijin
    Wang, Keqi
    Wan, Yingcai
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4169 - 4174
  • [50] Dynamic visual SLAM based on probability screening and weighting for deep features
    Fu, Fuji
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Jiahui
    MEASUREMENT, 2024, 236