DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability

被引:0
|
作者
Yin, Menglin [1 ]
Qin, Yong [1 ,2 ,3 ,4 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 546300, Peoples R China
[3] Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 546300, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
基金
中国国家自然科学基金;
关键词
Visual SLAM; dynamic scene; YOLOX; K-means plus plus clustering; dynamic probability;
D O I
10.32604/cmc.2024.057460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incorporate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively determining the threshold for extracting dynamic object contours as dynamic points change. This process divides the image into low dynamic, suspicious dynamic, and high dynamic regions. In the tracking thread, the dynamic point removal module assigns dynamic probability weights to the feature points in these regions. Combined with geometric methods, it detects and removes the dynamic points. The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms, providing better pose estimation accuracy and robustness in dynamic environments.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条
  • [31] AHY-SLAM: Toward Faster and More Accurate Visual SLAM in Dynamic Scenes Using Homogenized Feature Extraction and Object Detection Method
    Gong, Han
    Gong, Lei
    Ma, Tianbing
    Sun, Zhicheng
    Li, Liang
    SENSORS, 2023, 23 (09)
  • [32] YKP-SLAM: A Visual SLAM Based on Static Probability Update Strategy for Dynamic Environments
    Liu, Lisang
    Guo, Jiangfeng
    Zhang, Rongsheng
    ELECTRONICS, 2022, 11 (18)
  • [33] A visual SLAM method assisted by IMU and deep learning in indoor dynamic blurred scenes
    Liu, Fengyu
    Cao, Yi
    Cheng, Xianghong
    Liu, Luhui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [34] DP-SLAM: A visual SLAM with moving probability towards dynamic environments
    Li, Ao
    Wang, Jikai
    Xu, Meng
    Chen, Zonghai
    INFORMATION SCIENCES, 2021, 556 : 128 - 142
  • [35] Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes
    Zhang, Xinguang
    Zhang, Ruidong
    Wang, Xiankun
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [36] DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors
    Liu, Guihua
    Zeng, Weilin
    Feng, Bo
    Xu, Feng
    SENSORS, 2019, 19 (17)
  • [37] Object Mobility classification based Visual SLAM in Dynamic Environments
    Zhang, Huayan
    Zhang, Tianwei
    Li, Yang
    Zhang, Lei
    Wang, Wanpeng
    2020 17TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2020, : 437 - 441
  • [38] Dynamic Object Tracking and Masking for Visual SLAM
    Vincent, Jonathan
    Labbe, Mathieu
    Lauzon, Jean-Samuel
    Grondin, Francois
    Comtois-Rivet, Pier-Marc
    Michaud, Francois
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4974 - 4979
  • [39] DOT: Dynamic Object Tracking for Visual SLAM
    Ballester, Irene
    Fontan, Alejandro
    Civera, Javier
    Strobl, Klaus H.
    Triebel, Rudolph
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11705 - 11711
  • [40] DMOT-SLAM: visual SLAM in dynamic environments with moving object tracking
    Wang, Kesai
    Yao, Xifan
    Ma, Nanfeng
    Ran, Guangjun
    Liu, Min
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)