DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability

被引:0
|
作者
Yin, Menglin [1 ]
Qin, Yong [1 ,2 ,3 ,4 ]
Peng, Jiansheng [1 ,2 ,3 ,4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Automat, Liuzhou 545000, Peoples R China
[2] Hechi Univ, Dept Artificial Intelligence & Mfg, Hechi 546300, Peoples R China
[3] Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Hechi 546300, Peoples R China
[4] Hechi Univ, Sch Chem & Bioengn, Guangxi Key Lab Sericulture Ecol & Appl Intelligen, Hechi 546300, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
基金
中国国家自然科学基金;
关键词
Visual SLAM; dynamic scene; YOLOX; K-means plus plus clustering; dynamic probability;
D O I
10.32604/cmc.2024.057460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incorporate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively determining the threshold for extracting dynamic object contours as dynamic points change. This process divides the image into low dynamic, suspicious dynamic, and high dynamic regions. In the tracking thread, the dynamic point removal module assigns dynamic probability weights to the feature points in these regions. Combined with geometric methods, it detects and removes the dynamic points. The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms, providing better pose estimation accuracy and robustness in dynamic environments.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条
  • [21] Visual SLAM in dynamic environments based on object detection附视频
    Yongbao Ai
    Ting Rui
    Xiaoqiang Yang
    Jialin He
    Lei Fu
    Jianbin Li
    Ming Lu
    Defence Technology, 2021, (05) : 1712 - 1721
  • [22] DOE-SLAM: Dynamic Object Enhanced Visual SLAM
    Hu, Xiao
    Lang, Jochen
    SENSORS, 2021, 21 (09)
  • [23] Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for Dynamic Object Removal
    Theodorou, Charalambos
    Velisavljevic, Vladan
    Dyo, Vladimir
    SENSORS, 2022, 22 (19)
  • [24] DRSO-SLAM: A Dynamic RGB-D SLAM Algorithm for Indoor Dynamic Scenes
    Yu, Naigong
    Gan, Mengzhe
    Yu, Hejie
    Yang, Kang
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1052 - 1058
  • [25] A Survey of Visual SLAM for Scenes with Dynamic Objects
    Gao, Xingbo
    Shi, Xuhua
    Ge, Qunfeng
    Chen, Kuiye
    Jiqiren/Robot, 2021, 43 (06): : 733 - 750
  • [26] Indoor Dynamic Scene Visual SLAM Based On Human Detection And Geometric Constraints
    He, Jiantao
    He, Li
    Zhu, Haifei
    Xiang, Chaoqun
    Guan, Yisheng
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1652 - 1657
  • [27] A Dense Visual SLAM Method in Dynamic Scenes
    Liu, Xia
    Zhang, Jiachen
    Wang, Bo
    Jiang, Qifeng
    IEEE ACCESS, 2023, 11 : 138530 - 138539
  • [28] Visual SLAM Based on YOLOX-S in Dynamic Scenes
    Tian, YingLiang
    Xu, GaoChao
    Li, JiaXing
    Sun, YingJie
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 262 - 266
  • [29] ATY-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
    Qi, Hao
    Hu, Zhuhua
    Xiang, Yunfeng
    Cai, Dupeng
    Zhao, Yaochi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 3 - 14
  • [30] OFM-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
    Zhao, Xiong
    Zuo, Tao
    Hu, Xinyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021