Autocorrelation properties of temporal networks governed by dynamic node variables

被引:0
|
作者
Hartle, Harrison [1 ]
Masuda, Naoki [2 ,3 ,4 ]
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] SUNY Buffalo, Dept Math, New York, NY 14260 USA
[3] Univ Buffalo State Univ New York Buffalo, Inst Artificial Intelligence & Data Sci, Buffalo, NY 14260 USA
[4] Kobe Univ, Ctr Computat Social Sci, Kobe 6578501, Japan
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
日本科学技术振兴机构;
关键词
RANDOM GRAPHS; MODELS; DISTRIBUTIONS; EVOLUTION;
D O I
10.1103/PhysRevResearch.7.013083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables-synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the longtimescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Node Importance Research of Temporal CPPS Networks for Information Fusion
    Li, Yan
    Zhao, Ying
    Xu, Tianqi
    Wu, Senlin
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 1291 - 1301
  • [42] Node Similarity Measurement and Link Prediction Algorithm in Temporal Networks
    Chen D.-M.
    Yuan Z.-Z.
    Huang X.-Y.
    Wang D.-Q.
    Wang, Dong-Qi (wangdq@swc.neu.edu.cn), 1600, Northeast University (41): : 29 - 34and43
  • [43] Node Importance Identification for Temporal Networks via the TOPSIS Method
    Guo, Qiang
    Yin, Ran-Ran
    Liu, Jian-Guo
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (02): : 296 - 300
  • [44] Dynamic propagation in causal probabilistic networks with instantiated variables
    Hejlesen, OK
    Andreassen, S
    Anderson, SK
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1995, 934 : 151 - 162
  • [45] Measuring Temporal Patterns in Dynamic Social Networks
    Wei, Wei
    Carley, Kathleen M.
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 10 (01)
  • [46] Dynamic controllability of temporal networks with instantaneous reaction
    Zavatteri, Matteo
    Rizzi, Romeo
    Villa, Tiziano
    INFORMATION SCIENCES, 2022, 613 : 932 - 952
  • [47] Dynamic Recurrent Embedding for Temporal Interaction Networks
    Liu, Qilin
    Zhu, Xiaobo
    Yuan, Changgan
    Wu, Hongje
    Zhao, Xinming
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 615 - 625
  • [48] Tracking Temporal Community Strength in Dynamic Networks
    Du, Nan
    Jia, Xiaowei
    Gao, Jing
    Gopalakrishnan, Vishrawas
    Zhang, Aidong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (11) : 3125 - 3137
  • [49] Dynamic Topic Models for Temporal Document Networks
    Zhang, Delvin Ce
    Lauw, Hady W.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [50] Learning dynamic embeddings for temporal attributed networks
    Xie, Luodi
    Tian, Hui
    Shen, Hong
    KNOWLEDGE-BASED SYSTEMS, 2024, 286