Autocorrelation properties of temporal networks governed by dynamic node variables

被引:0
|
作者
Hartle, Harrison [1 ]
Masuda, Naoki [2 ,3 ,4 ]
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] SUNY Buffalo, Dept Math, New York, NY 14260 USA
[3] Univ Buffalo State Univ New York Buffalo, Inst Artificial Intelligence & Data Sci, Buffalo, NY 14260 USA
[4] Kobe Univ, Ctr Computat Social Sci, Kobe 6578501, Japan
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
日本科学技术振兴机构;
关键词
RANDOM GRAPHS; MODELS; DISTRIBUTIONS; EVOLUTION;
D O I
10.1103/PhysRevResearch.7.013083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables-synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the longtimescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Conditions for handling confounding variables in dynamic networks
    Dankers, Arne
    Van den Hof, Paul M. J.
    Materassi, Donatello
    Weerts, Harm H. M.
    IFAC PAPERSONLINE, 2017, 50 (01): : 3983 - 3988
  • [22] Inferring Topology of Networks With Hidden Dynamic Variables
    Schmidt, Raoul
    Haehne, Hauke
    Hillmann, Laura
    Casadiego, Jose
    Witthaut, Dirk
    Schafer, Benjamin
    Timme, Marc
    IEEE ACCESS, 2022, 10 : 76682 - 76692
  • [23] Temporal fidelity in dynamic social networks
    Arkadiusz Stopczynski
    Piotr Sapiezynski
    Alex ‘Sandy’ Pentland
    Sune Lehmann
    The European Physical Journal B, 2015, 88
  • [24] Temporal fidelity in dynamic social networks
    Stopczynski, Arkadiusz
    Sapiezynski, Piotr
    Pentland, Alex 'Sandy'
    Lehmann, Sune
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (10):
  • [25] Adjusting for Unmeasured Confounding Variables in Dynamic Networks
    Jahandari, Sina
    Srivastava, Ajitesh
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1237 - 1242
  • [26] Robust Dynamic Clustering for Temporal Networks
    You, Jingyi
    Hu, Chenlong
    Kamigaito, Hidetaka
    Funakoshi, Kotaro
    Okumura, Manabu
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2424 - 2433
  • [27] Community Vitality in Dynamic Temporal Networks
    Fu Cai
    Li Min
    Zou Deqing
    Qu Shuyan
    Han Lansheng
    Park, James J.
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [28] Tuning Dynamic Mechanical Response in Metallopolymer Networks through Simultaneous Control of Structural and Temporal Properties of the Networks
    Mozhdehi, Davoud
    Neal, James A.
    Grindy, Scott C.
    Cordeau, Yves
    Ayala, Sergio
    Holten-Andersen, Niels
    Guan, Zhibin
    MACROMOLECULES, 2016, 49 (17) : 6310 - 6321
  • [29] Temporal Ordered Clustering in Dynamic Networks
    Turowski, Krzysztof
    Sreedharan, Jithin K.
    Szpankowski, Wojciech
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1349 - 1354
  • [30] Dynamic node activation in networks of rechargeable sensors
    Kar, K
    Krishnamurthy, A
    Jaggi, N
    IEEE INFOCOM 2005: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2005, : 1997 - 2007