Autocorrelation properties of temporal networks governed by dynamic node variables

被引:0
|
作者
Hartle, Harrison [1 ]
Masuda, Naoki [2 ,3 ,4 ]
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] SUNY Buffalo, Dept Math, New York, NY 14260 USA
[3] Univ Buffalo State Univ New York Buffalo, Inst Artificial Intelligence & Data Sci, Buffalo, NY 14260 USA
[4] Kobe Univ, Ctr Computat Social Sci, Kobe 6578501, Japan
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
日本科学技术振兴机构;
关键词
RANDOM GRAPHS; MODELS; DISTRIBUTIONS; EVOLUTION;
D O I
10.1103/PhysRevResearch.7.013083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables-synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the longtimescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Incremental Learning in Dynamic Networks for Node Classification
    Kajdanowicz, Tomasz
    Tagowski, Kamil
    Falkiewicz, Maciej
    Kazienko, Przemyslaw
    NETWORK INTELLIGENCE MEETS USER CENTERED SOCIAL MEDIA NETWORKS, 2018, : 133 - 142
  • [32] Adaptive Spatiotemporal Node Selection in Dynamic Networks
    Hari, Pradip
    McCabe, John B. P.
    Banafato, Jonathan
    Henry, Marcus
    Ko, Kevin
    Koukoumidis, Emmanouil
    Kremer, Ulrich
    Martonosi, Margaret
    Peh, Li-Shiuan
    PACT 2010: PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2010, : 227 - 236
  • [33] Dynamic node activation in networks of rechargeable sensors
    Kar, K
    Krishnamurthy, A
    Jaggi, N
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2006, 14 (01) : 15 - 26
  • [34] Dynamic reconfiguration of node location in wormhole networks
    Sánchez, JL
    García, JM
    JOURNAL OF SYSTEMS ARCHITECTURE, 2000, 46 (10) : 873 - 888
  • [35] Exploring the evolution of node neighborhoods in Dynamic Networks
    Orman, Gunce Keziban
    Labatut, Vincent
    Naskali, Ahmet Teoman
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 375 - 391
  • [36] Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease
    Jie, Biao
    Liu, Mingxia
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2018, 47 : 81 - 94
  • [37] A GENERAL APPROACH BASED ON AUTOCORRELATION TO DETERMINE INPUT VARIABLES OF NEURAL NETWORKS FOR TIME SERIES FORECASTING
    NAKAMORI
    Yoshiteru
    Journal of Systems Science and Complexity, 2004, (03) : 297 - 305
  • [38] Channel autocorrelation-based dynamic slot scheduling for body area networks
    Hongyun Zhang
    Farzad Safaei
    Le Chung Tran
    EURASIP Journal on Wireless Communications and Networking, 2018
  • [39] Channel autocorrelation-based dynamic slot scheduling for body area networks
    Zhang, Hongyun
    Safaei, Farzad
    Le Chung Tran
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018,
  • [40] Embedded Temporal Convolutional Networks for Essential Climate Variables Forecasting
    Villia, Maria Myrto
    Tsagkatakis, Grigorios
    Moghaddam, Mahta
    Tsakalides, Panagiotis
    SENSORS, 2022, 22 (05)