Autocorrelation properties of temporal networks governed by dynamic node variables

被引:0
|
作者
Hartle, Harrison [1 ]
Masuda, Naoki [2 ,3 ,4 ]
机构
[1] Santa Fe Inst, Santa Fe, NM 87501 USA
[2] SUNY Buffalo, Dept Math, New York, NY 14260 USA
[3] Univ Buffalo State Univ New York Buffalo, Inst Artificial Intelligence & Data Sci, Buffalo, NY 14260 USA
[4] Kobe Univ, Ctr Computat Social Sci, Kobe 6578501, Japan
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 01期
基金
日本科学技术振兴机构;
关键词
RANDOM GRAPHS; MODELS; DISTRIBUTIONS; EVOLUTION;
D O I
10.1103/PhysRevResearch.7.013083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study synthetic temporal networks whose evolution is determined by stochastically evolving node variables-synthetic analogues of, e.g., temporal proximity networks of mobile agents. We quantify the longtimescale correlations of these evolving networks by an autocorrelative measure of network-structural memory. Several distinct patterns of autocorrelation arise, including power-law decay and exponential decay, depending on the choice of node-variable dynamics and connection probability function. Our methods are also applicable in wider contexts; our temporal network models are tractable mathematically and in simulation, and our long-term memory quantification is analytically tractable and straightforwardly computable from temporal network data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Temporal Autocorrelation Functions of PMD Variables in the Anisotropic Hinge Model
    Soliman, George
    Yevick, David
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (16) : 2976 - 2980
  • [2] Functional brain networks reflect spatial and temporal autocorrelation
    Maxwell Shinn
    Amber Hu
    Laurel Turner
    Stephanie Noble
    Katrin H. Preller
    Jie Lisa Ji
    Flora Moujaes
    Sophie Achard
    Dustin Scheinost
    R. Todd Constable
    John H. Krystal
    Franz X. Vollenweider
    Daeyeol Lee
    Alan Anticevic
    Edward T. Bullmore
    John D. Murray
    Nature Neuroscience, 2023, 26 : 867 - 878
  • [3] Functional brain networks reflect spatial and temporal autocorrelation
    Shinn, Maxwell
    Hu, Amber
    Turner, Laurel
    Noble, Stephanie
    Preller, Katrin H.
    Ji, Jie Lisa
    Moujaes, Flora
    Achard, Sophie
    Scheinost, Dustin
    Constable, R. Todd
    Krystal, John H.
    Vollenweider, Franz X.
    Lee, Daeyeol
    Anticevic, Alan
    Bullmore, Edward T.
    Murray, John D.
    NATURE NEUROSCIENCE, 2023, 26 (05) : 867 - 878
  • [4] Hyperbolic node embedding for temporal networks
    Lili Wang
    Chenghan Huang
    Weicheng Ma
    Ruibo Liu
    Soroush Vosoughi
    Data Mining and Knowledge Discovery, 2021, 35 : 1906 - 1940
  • [5] Node influence of the dynamic networks
    Ren Zhuo-Ming
    ACTA PHYSICA SINICA, 2020, 69 (04)
  • [6] Hyperbolic node embedding for temporal networks
    Wang, Lili
    Huang, Chenghan
    Ma, Weicheng
    Liu, Ruibo
    Vosoughi, Soroush
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (05) : 1906 - 1940
  • [7] Temporal node centrality in complex networks
    Kim, Hyoungshick
    Anderson, Ross
    PHYSICAL REVIEW E, 2012, 85 (02)
  • [8] Combining Temporal Aspects of Dynamic Networks with Node2Vec for a more Efficient Dynamic Link Prediction
    De Winter, Sam
    Decuypere, Tim
    Mitrovic, Sandra
    Baesens, Bart
    De Weerdt, Jochen
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 1234 - 1241
  • [9] Temporal gravity model for important node identification in temporal networks
    Bi, Jialin
    Jin, Ji
    Qu, Cunquan
    Zhan, Xiuxiu
    Wang, Guanghui
    Yan, Guiying
    Chaos, Solitons and Fractals, 2021, 147
  • [10] Temporal gravity model for important node identification in temporal networks
    Bi, Jialin
    Jin, Ji
    Qu, Cunquan
    Zhan, Xiuxiu
    Wang, Guanghui
    Yan, Guiying
    CHAOS SOLITONS & FRACTALS, 2021, 147