Ischemic Stroke Lesion Segmentation on Multiparametric CT Perfusion Maps Using Deep Neural Network

被引:0
|
作者
Kandpal, Ankit [1 ]
Gupta, Rakesh Kumar [2 ]
Singh, Anup [1 ,3 ]
机构
[1] Indian Inst Technol Delhi, Ctr Biomed Engn, New Delhi 110010, India
[2] Fortis Mem Res Inst, Dept Radiol, Gurugram 122002, India
[3] All India Inst Med Sci Delhi, Dept Biomed Engn, New Delhi 110029, India
关键词
computer aided diagnosis; computed tomography; deep learning; ischemic stroke; CT perfusion; medical image segmentation;
D O I
10.3390/ai6010015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: Accurate delineation of lesions in acute ischemic stroke is important for determining the extent of tissue damage and the identification of potentially salvageable brain tissues. Automatic segmentation on CT images is challenging due to the poor contrast-to-noise ratio. Quantitative CT perfusion images improve the estimation of the perfusion deficit regions; however, they are limited by a poor signal-to-noise ratio. The study aims to investigate the potential of deep learning (DL) algorithms for the improved segmentation of ischemic lesions. Methods: This study proposes a novel DL architecture, DenseResU-NetCTPSS, for stroke segmentation using multiparametric CT perfusion images. The proposed network is benchmarked against state-of-the-art DL models. Its performance is assessed using the ISLES-2018 challenge dataset, a widely recognized dataset for stroke segmentation in CT images. The proposed network was evaluated on both training and test datasets. Results: The final optimized network takes three image sequences, namely CT, cerebral blood volume (CBV), and time to max (Tmax), as input to perform segmentation. The network achieved a dice score of 0.65 +/- 0.19 and 0.45 +/- 0.32 on the training and testing datasets. The model demonstrated a notable improvement over existing state-of-the-art DL models. Conclusions: The optimized model combines CT, CBV, and Tmax images, enabling automatic lesion identification with reasonable accuracy and aiding radiologists in faster, more objective assessments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] CT perfusion imaging in acute ischemic stroke:: comparison of perfusion maps and conventional CT findings.
    König, M
    Banach-Planchamp, R
    Kraus, M
    Klotz, E
    Falk, A
    Gehlen, W
    Heuser, L
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2000, 172 (03): : 219 - 226
  • [22] IS-Net: Automatic Ischemic Stroke Lesion Segmentation on CT Images
    Yang, Hao
    Huang, Chao
    Nie, Ximing
    Wang, Long
    Liu, Xiran
    Luo, Xiong
    Liu, Liping
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (05) : 483 - 493
  • [23] Multiparametric CT Perfusion to Determine the Collaterals Status in Patients With Acute Ischemic Stroke: A New Perfusion Index
    Awad, Ahmed J.
    Tadayon, Sayedhedayatollah E.
    Wei, Daniel
    Haroun, Reham R.
    Oxley, Thomas J.
    Fifi, Johanna T.
    Doshi, Amish H.
    De Leacy, Reade A.
    Bederson, Joshua B.
    Mocco, J.
    Nael, Kambiz
    STROKE, 2017, 48
  • [24] Ischemic Stroke Lesion Identification in Non-Contrast CT Using Deep Learning
    Christensen, Soren
    Federau, Christian
    Maclaren, Julian
    Srivatsan, Aditya
    Albers, Greg
    Lansberg, Maarten
    STROKE, 2020, 51
  • [25] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)
  • [26] Ischemic Stroke Segmentation from CT Perfusion Scans Using Cluster-Representation Learning
    Zhang, Jianyuan
    Shi, Feng
    Chen, Lei
    Xue, Zhong
    Zhang, Lichi
    Qian, Dahong
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 67 - 76
  • [27] Application of Image Segmentation on Evaluating Infarct Core in Acute Ischemic Stroke Using CT Perfusion
    Chen, Zhong-Ping
    Shi, Ming-Chao
    Deng, Shuang-Lin
    He, Xin
    Yuan, Ting-Ting
    Ma, Yue
    Yan, Yu-Zu
    Wang, Zhuo
    Yang, Fan
    Tong, Dan
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 138 - 142
  • [28] Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images
    Ho, King Chung
    Scalzo, Fabien
    Sarma, Karthik, V
    Speier, William
    El-Saden, Suzie
    Arnold, Corey
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [29] Ischemic stroke lesion segmentation using stacked sparse autoencoder
    Praveen, G. B.
    Agrawal, Anita
    Sundaram, Ponraj
    Sardesai, Sanjay
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 38 - 52
  • [30] Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks
    Dobshik, A. V.
    Verbitskiy, S. K.
    Pestunov, I. A.
    Sherman, K. M.
    Sinyavskiy, Yu. N.
    Tulupov, A. A.
    Berikov, V. B.
    COMPUTER OPTICS, 2023, 47 (05) : 770 - 777