Ischemic Stroke Lesion Segmentation on Multiparametric CT Perfusion Maps Using Deep Neural Network

被引:0
|
作者
Kandpal, Ankit [1 ]
Gupta, Rakesh Kumar [2 ]
Singh, Anup [1 ,3 ]
机构
[1] Indian Inst Technol Delhi, Ctr Biomed Engn, New Delhi 110010, India
[2] Fortis Mem Res Inst, Dept Radiol, Gurugram 122002, India
[3] All India Inst Med Sci Delhi, Dept Biomed Engn, New Delhi 110029, India
关键词
computer aided diagnosis; computed tomography; deep learning; ischemic stroke; CT perfusion; medical image segmentation;
D O I
10.3390/ai6010015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: Accurate delineation of lesions in acute ischemic stroke is important for determining the extent of tissue damage and the identification of potentially salvageable brain tissues. Automatic segmentation on CT images is challenging due to the poor contrast-to-noise ratio. Quantitative CT perfusion images improve the estimation of the perfusion deficit regions; however, they are limited by a poor signal-to-noise ratio. The study aims to investigate the potential of deep learning (DL) algorithms for the improved segmentation of ischemic lesions. Methods: This study proposes a novel DL architecture, DenseResU-NetCTPSS, for stroke segmentation using multiparametric CT perfusion images. The proposed network is benchmarked against state-of-the-art DL models. Its performance is assessed using the ISLES-2018 challenge dataset, a widely recognized dataset for stroke segmentation in CT images. The proposed network was evaluated on both training and test datasets. Results: The final optimized network takes three image sequences, namely CT, cerebral blood volume (CBV), and time to max (Tmax), as input to perform segmentation. The network achieved a dice score of 0.65 +/- 0.19 and 0.45 +/- 0.32 on the training and testing datasets. The model demonstrated a notable improvement over existing state-of-the-art DL models. Conclusions: The optimized model combines CT, CBV, and Tmax images, enabling automatic lesion identification with reasonable accuracy and aiding radiologists in faster, more objective assessments.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multiphase CT angiography perfusion maps for predicting target mismatch and ischemic lesion volumes
    Kevin J. Chung
    Sachin K. Pandey
    Alexander V. Khaw
    Ting-Yim Lee
    Scientific Reports, 13
  • [32] Multiphase CT angiography perfusion maps for predicting target mismatch and ischemic lesion volumes
    Chung, Kevin J.
    Pandey, Sachin K.
    Khaw, Alexander V.
    Lee, Ting-Yim
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] MRI-based Prostate and Dominant Lesion Segmentation using Deep Neural Network
    Wang, Tonghe
    Lei, Yang
    Ojo, Olayinka A. Abiodun
    Akin-Akintayo, Oladunni O.
    Akintayo, Akinyemi A.
    Curran, Walter J.
    Liu, Tian
    Schuster, David M.
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [34] Deep learning models for ischemic stroke lesion segmentation in medical images: A survey
    Luo J.
    Dai P.
    He Z.
    Huang Z.
    Liao S.
    Liu K.
    Computers in Biology and Medicine, 2024, 175
  • [35] Multi-scale Deep Convolutional Neural Network for Stroke Lesions Segmentation on CT Images
    Liu, Liangliang
    Yang, Shuai
    Meng, Li
    Li, Min
    Wang, Jianxin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 283 - 291
  • [36] Neural network-derived perfusion maps: A model-free approach to computed tomography perfusion in patients with acute ischemic stroke
    Gava, Umberto A.
    D'Agata, Federico
    Tartaglione, Enzo
    Renzulli, Riccardo
    Grangetto, Marco
    Bertolino, Francesca
    Santonocito, Ambra
    Bennink, Edwin
    Vaudano, Giacomo
    Boghi, Andrea
    Bergui, Mauro
    FRONTIERS IN NEUROINFORMATICS, 2023, 17
  • [37] Automatic lesion detection and segmentation in PSMA PET/CT images using deep neural networks
    Xu, Y.
    Klyuzhin, I.
    Harsini, S.
    Ortiz, A.
    Rahmim, A.
    Ferres, J. Lavista
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S329 - S330
  • [38] Probability maps classify ischemic stroke regions more accurately than CT perfusion summary maps
    Peerlings, Daan
    van Ommen, Fasco
    Bennink, Edwin
    Dankbaar, Jan W.
    Velthuis, Birgitta K.
    Emmer, Bart J.
    Hoving, Jan W.
    Majoie, Charles B. L. M.
    Marquering, Henk A.
    de Jong, Hugo W. A. M.
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6367 - 6375
  • [39] Probability maps classify ischemic stroke regions more accurately than CT perfusion summary maps
    Daan Peerlings
    Fasco van Ommen
    Edwin Bennink
    Jan W. Dankbaar
    Birgitta K. Velthuis
    Bart J. Emmer
    Jan W. Hoving
    Charles B. L. M. Majoie
    Henk A. Marquering
    Hugo W. A. M. de Jong
    European Radiology, 2022, 32 : 6367 - 6375
  • [40] CT perfusion for lesion-symptom mapping in large vessel occlusion ischemic stroke
    Garrard, James William
    Neuhaus, Ain
    Carone, Davide
    Joly, Olivier
    Zarrintan, Armin
    Rabinstein, Alejandro A.
    Huynh, Thien
    Harston, George
    Brinjikji, Waleed
    Kallmes, David F.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2024,