IS-Net: Automatic Ischemic Stroke Lesion Segmentation on CT Images

被引:4
|
作者
Yang, Hao [1 ]
Huang, Chao [1 ]
Nie, Ximing [3 ]
Wang, Long [1 ,2 ]
Liu, Xiran [3 ]
Luo, Xiong [1 ]
Liu, Liping [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Innovat Sch, Beijing 528399, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurol, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Lesions; Convolution; Image segmentation; Semantics; Decoding; Computed tomography; Magnetic resonance imaging; Ischemic stroke lesion segmentation; noncon-trast computed tomography (NCCT) images; nonlocal decoder; pyramid features; semantic segmentation;
D O I
10.1109/TRPMS.2023.3246496
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Ischemic stroke is an acute cerebral vascular disease and makes up about 80% of all stroke cases. Noncontrast computed tomography (NCCT) is a widely applied imaging technique for ischemic stroke assessment. However, it is challenging to identify ischemic lesion on NCCT images due to its high variability in location, contrast, and geometry. In this work, we propose IS-Net, an encoder-decoder convolutional neural network for automatic ischemic stroke lesion segmentation on NCCT images. The proposed IS-Net takes a hierarchical network as backbone while the pyramid feature aggregation (PFA) module is designed to aggregate features from multistages of backbone, and reasonable feature fusion strategy is considered in PFA to enhance multilevel propagation. To fully mine the boundary cues, the edge constraint scheme is introduced by deep supervision which broadcasts low-level features to different modules. In addition, to overcome the limitation of fixed geometric structure of convolution for multirange dependency exploitation, a nonlocal parallel decoder is introduced with deformable convolution and self-attention. The proposed IS-Net is evaluated on manually labeled follow-up NCCT dataset composed of 1004 cases (totally 9020 images). The proposed IS-Net is compared with the state-of-the-art segmentation models and illustrates the highest score on segmentation criteria and sensitivity.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 50 条
  • [1] A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images
    Kumar, Amish
    Ghosal, Palash
    Kundu, Soumya Snigdha
    Mukherjee, Amritendu
    Nandi, Debashis
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [2] Automatic Segmentation of Ventricular Cerebrospinal Fluid from Ischemic Stroke CT Images
    L. E. Poh
    V. Gupta
    A. Johnson
    R. Kazmierski
    W. L. Nowinski
    Neuroinformatics, 2012, 10 : 159 - 172
  • [3] Automatic Segmentation of Ventricular Cerebrospinal Fluid from Ischemic Stroke CT Images
    Poh, L. E.
    Gupta, V.
    Johnson, A.
    Kazmierski, R.
    Nowinski, W. L.
    NEUROINFORMATICS, 2012, 10 (02) : 159 - 172
  • [4] Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study
    Makela, Teemu
    Oman, Olli
    Hokkinen, Lasse
    Wilppu, Ulla
    Salli, Eero
    Savolainen, Sauli
    Kangasniemi, Marko
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (03) : 551 - 563
  • [5] Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study
    Teemu Mäkelä
    Olli Öman
    Lasse Hokkinen
    Ulla Wilppu
    Eero Salli
    Sauli Savolainen
    Marko Kangasniemi
    Journal of Digital Imaging, 2022, 35 : 551 - 563
  • [6] Automatic detection of ischemic-stroke-lesion with CNN segmentation: A study
    Al Attar, Ferasnadhimhasoon
    Kadry, Seifedine
    Manic, K. Suresh
    Meqdad, Maytham N.
    Journal of Physics: Conference Series, 2022, 2318 (01)
  • [7] LiU-Net: Ischemic Stroke Lesion Segmentation Based on Improved KiU-Net
    Li, Yingwei
    Zhang, Xiaoxia
    Liu, Luzhou
    ENGINEERING LETTERS, 2024, 32 (02) : 369 - 378
  • [8] Ischemic stroke segmentation on CT images using joint features
    Usinskas, A
    Dobrovolskis, RA
    Tomandl, BF
    INFORMATICA, 2004, 15 (02) : 283 - 290
  • [9] Segmentation of Ischemic Stroke Area from CT Brain Images
    Yahiaoui, Amina Fatima Zahra
    Bessaid, Abdelhafid
    2016 INTERNATIONAL SYMPOSIUM ON SIGNAL, IMAGE, VIDEO AND COMMUNICATIONS (ISIVC), 2016, : 13 - 17
  • [10] Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network
    Soltanpour, Mohsen
    Greiner, Russ
    Boulanger, Pierre
    Buck, Brian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137 (137)