IS-Net: Automatic Ischemic Stroke Lesion Segmentation on CT Images

被引:4
|
作者
Yang, Hao [1 ]
Huang, Chao [1 ]
Nie, Ximing [3 ]
Wang, Long [1 ,2 ]
Liu, Xiran [3 ]
Luo, Xiong [1 ]
Liu, Liping [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Innovat Sch, Beijing 528399, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurol, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Lesions; Convolution; Image segmentation; Semantics; Decoding; Computed tomography; Magnetic resonance imaging; Ischemic stroke lesion segmentation; noncon-trast computed tomography (NCCT) images; nonlocal decoder; pyramid features; semantic segmentation;
D O I
10.1109/TRPMS.2023.3246496
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Ischemic stroke is an acute cerebral vascular disease and makes up about 80% of all stroke cases. Noncontrast computed tomography (NCCT) is a widely applied imaging technique for ischemic stroke assessment. However, it is challenging to identify ischemic lesion on NCCT images due to its high variability in location, contrast, and geometry. In this work, we propose IS-Net, an encoder-decoder convolutional neural network for automatic ischemic stroke lesion segmentation on NCCT images. The proposed IS-Net takes a hierarchical network as backbone while the pyramid feature aggregation (PFA) module is designed to aggregate features from multistages of backbone, and reasonable feature fusion strategy is considered in PFA to enhance multilevel propagation. To fully mine the boundary cues, the edge constraint scheme is introduced by deep supervision which broadcasts low-level features to different modules. In addition, to overcome the limitation of fixed geometric structure of convolution for multirange dependency exploitation, a nonlocal parallel decoder is introduced with deformable convolution and self-attention. The proposed IS-Net is evaluated on manually labeled follow-up NCCT dataset composed of 1004 cases (totally 9020 images). The proposed IS-Net is compared with the state-of-the-art segmentation models and illustrates the highest score on segmentation criteria and sensitivity.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 50 条
  • [21] CT-To-MR conditional generative adversarial networks for ischemic stroke lesion segmentation
    Rubin, Jonathan
    Abulnaga, S. Mazdak
    2019 IEEE International Conference on Healthcare Informatics, ICHI 2019, 2019,
  • [22] CT-To-MR Conditional Generative Adversarial Networks for Ischemic Stroke Lesion Segmentation
    Rubin, Jonathan
    Abulnaga, S. Mazdak
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 37 - 43
  • [23] Fully Automated Thrombus Segmentation on CT Images of Patients with Acute Ischemic Stroke
    Mojtahedi, Mahsa
    Kappelhof, Manon
    Ponomareva, Elena
    Tolhuisen, Manon
    Jansen, Ivo
    Bruggeman, Agnetha A. E.
    Dutra, Bruna G.
    Yo, Lonneke
    LeCouffe, Natalie
    Hoving, Jan W.
    van Voorst, Henk
    Brouwer, Josje
    Terreros, Nerea Arrarte
    Konduri, Praneeta
    Meijer, Frederick J. A.
    Appelman, Auke
    Treurniet, Kilian M.
    Coutinho, Jonathan M.
    Roos, Yvo
    van Zwam, Wim
    Dippel, Diederik
    Gavves, Efstratios
    Emmer, Bart J.
    Majoie, Charles
    Marquering, Henk
    DIAGNOSTICS, 2022, 12 (03)
  • [24] Automatic segmentation of bladder in CT images
    Shi, Feng
    Yang, Jie
    Zhu, Yue-min
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (02): : 239 - 246
  • [25] Automatic Liver Segmentation on CT Images
    Celik, Torecan
    Song, Hong
    Chen, Lei
    Yang, Jian
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, 2018, 473 : 189 - 196
  • [27] Automatic segmentation of neck CT images
    Teng, Chia-Chi
    Shapiro, Linda G.
    Kalet, Ira
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 442 - +
  • [28] Automatic method recognition of ischemic stroke area on unenhanced CT brain images
    Yahiaoui, Amina Fatima Zahra
    Bessaid, Abdelhafid
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 38 (04) : 319 - 333
  • [29] Automatic segmentation of bladder in CT images
    Feng Shi
    Jie Yang
    Yue-min Zhu
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 239 - 246
  • [30] Automatic multiorgan segmentation in thorax CT images using U-net-GAN
    Dong, Xue
    Lei, Yang
    Wang, Tonghe
    Thomas, Matthew
    Tang, Leonardo
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2019, 46 (05) : 2157 - 2168