Machine learning approach to identify early predictors of MS progression: the NeuroArtP3 project

被引:0
|
作者
Poretto, Valentina [1 ]
Lapucci, Caterina [2 ]
Betti, Matteo [3 ]
Bellinvia, Angelo [3 ]
Endrizzi, Walter [4 ]
Ragni, Flavio [4 ]
Bovo, Stefano [4 ]
Longo, Chiara [1 ]
Carpi, Elisabetta [2 ]
Moroni, Monica [4 ]
Chierici, Marco [4 ]
Jurman, Giuseppe [4 ]
Osmani, Venet [2 ]
Piana, Michele [5 ]
Marenco, Manuela [2 ]
Marangoni, Sabrina [1 ]
Portaccio, Emilio [3 ]
Giometto, Bruno [1 ,6 ]
Inglese, Matilde [2 ,7 ]
Antonio, Ucccelli [2 ]
Amato, Maria Pia [3 ,8 ]
机构
[1] Azienda Prov Serv Sanit APSS, Neurol Unit, Trento, Italy
[2] IRCCS Osped Policlin San Martino, Genoa, Italy
[3] Univ Florence, Dept NEUROFARBA, Florence, Italy
[4] Fdn Bruno Kessler, Data Sci Hlth, Trento, Italy
[5] Univ Genoa, IRCCS Osped Policlin San Martino, Dipartimento Matemat, Genoa, Italy
[6] Univ Trento, Ctr Interdipartimentale Sci Med CISMed, Fac Med & Chirurg, Trento, Italy
[7] Univ Genoa, Dept Neurol Rehabil Ophthalmol Genet Maternal & C, Genoa, Italy
[8] IRCCS Don Carlo Gnocchi Fdn, Florence, Italy
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1577/791
引用
收藏
页码:997 / 997
页数:1
相关论文
共 50 条
  • [1] Using machine learning to identify early predictors of adolescent emotion regulation development
    Van Lissa, Caspar J.
    Beinhauer, Lukas
    Branje, Susan
    Meeus, Wim H. J.
    JOURNAL OF RESEARCH ON ADOLESCENCE, 2023, 33 (03) : 870 - 889
  • [2] A Machine Learning Approach to Identify Predictors of Mortality in Patients With Atherosclerotic Cardiovascular Disease
    Dikilitas, Ozan
    He Baosheng
    Kullo, Iftikhar
    CIRCULATION, 2018, 138
  • [3] A MACHINE LEARNING APPROACH TO IDENTIFY CHILD OPPORTUNITY PREDICTORS ASSOCIATED WITH FIREARM INJURY
    Reddy, Anireddy
    Woods-Hill, Charlotte
    Penney, Chris
    Tam, Vicky
    Novick, Dorothy
    Fein, Joel
    Yehya, Nadir
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [4] EARLY PREDICTORS OF SJOGREN'S SYNDROME: A MACHINE LEARNING APPROACH
    Royer, J.
    Signorovitch, J.
    Pivneva, I
    Huber, W.
    Capkun, G.
    VALUE IN HEALTH, 2019, 22 : S378 - S379
  • [5] Early Childhood Predictors for Dental Caries: A Machine Learning Approach
    Reyes, L. Toledo
    Knorst, J. K.
    Ortiz, F. R.
    Brondani, B.
    Emmanuelli, B.
    Guedes, R. Saraiva
    Mendes, F. M.
    Ardenghi, T. M.
    JOURNAL OF DENTAL RESEARCH, 2023, 102 (09) : 999 - 1006
  • [6] A Machine Learning Approach to Identify Predictors of Frequent Vaping and Vulnerable Californian Youth Subgroups
    Fu, Rui
    Shi, Jiamin
    Chaiton, Michael
    Leventhal, Adam M.
    Unger, Jennifer B.
    Barrington-Trimis, Jessica L.
    NICOTINE & TOBACCO RESEARCH, 2022, 24 (07) : 1028 - 1036
  • [7] Machine Learning Methods to Identify Predictors of Psychological Distress
    Chen, Yang
    Zhang, Xiaomei
    Lu, Lin
    Wang, Yinzhi
    Liu, Jiajia
    Qin, Lei
    Ye, Linglong
    Zhu, Jianping
    Shia, Ben-Chang
    Chen, Ming-Chih
    PROCESSES, 2022, 10 (05)
  • [8] FibrAIm - The machine learning approach to identify the early stage of liver fibrosis and steatosis
    Ginter-Matuszewska, Barbara
    Adamek, Agnieszka
    Majchrzak, Maciej
    Rozplochowski, Blazej
    Zientarska, Agata
    Kowala-Piaskowska, Arleta
    Lukasiak, Piotr
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 197
  • [9] ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach
    Tilwani, Deepa
    Bradshaw, Jessica
    Sheth, Amit
    O'Reilly, Christian
    BIOENGINEERING-BASEL, 2023, 10 (07):
  • [10] Analyzing early states of HD progression using a machine learning driven approach
    Eyigoz, E.
    Sathe, S.
    Warner, J.
    Dey, S.
    Li, T.
    Rojas, P.
    Sampaio, C.
    Hu, J.
    MOVEMENT DISORDERS, 2022, 37 : S297 - S298