Machine learning approach to identify early predictors of MS progression: the NeuroArtP3 project

被引:0
|
作者
Poretto, Valentina [1 ]
Lapucci, Caterina [2 ]
Betti, Matteo [3 ]
Bellinvia, Angelo [3 ]
Endrizzi, Walter [4 ]
Ragni, Flavio [4 ]
Bovo, Stefano [4 ]
Longo, Chiara [1 ]
Carpi, Elisabetta [2 ]
Moroni, Monica [4 ]
Chierici, Marco [4 ]
Jurman, Giuseppe [4 ]
Osmani, Venet [2 ]
Piana, Michele [5 ]
Marenco, Manuela [2 ]
Marangoni, Sabrina [1 ]
Portaccio, Emilio [3 ]
Giometto, Bruno [1 ,6 ]
Inglese, Matilde [2 ,7 ]
Antonio, Ucccelli [2 ]
Amato, Maria Pia [3 ,8 ]
机构
[1] Azienda Prov Serv Sanit APSS, Neurol Unit, Trento, Italy
[2] IRCCS Osped Policlin San Martino, Genoa, Italy
[3] Univ Florence, Dept NEUROFARBA, Florence, Italy
[4] Fdn Bruno Kessler, Data Sci Hlth, Trento, Italy
[5] Univ Genoa, IRCCS Osped Policlin San Martino, Dipartimento Matemat, Genoa, Italy
[6] Univ Trento, Ctr Interdipartimentale Sci Med CISMed, Fac Med & Chirurg, Trento, Italy
[7] Univ Genoa, Dept Neurol Rehabil Ophthalmol Genet Maternal & C, Genoa, Italy
[8] IRCCS Don Carlo Gnocchi Fdn, Florence, Italy
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1577/791
引用
收藏
页码:997 / 997
页数:1
相关论文
共 50 条
  • [21] A machine learning approach for modeling algorithm performance predictors
    Pérez, J
    Pazos, RA
    Frausto, J
    Cruz, L
    Fraire, H
    Santiago, E
    García, NE
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3131 : 70 - 80
  • [22] Using machine-learning methods to identify early-life predictors of 11-year language outcome
    Gasparini, Loretta
    Shepherd, Daisy A.
    Bavin, Edith L.
    Eadie, Patricia
    Reilly, Sheena
    Morgan, Angela T.
    Wake, Melissa
    JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2022, : 1242 - 1252
  • [23] Neuropsychological tests and machine learning: identifying predictors of MCI and dementia progression
    Cazzolli, Carlotta
    Chierici, Marco
    Dallabona, Monica
    Guella, Chiara
    Jurman, Giuseppe
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2025, 37 (01)
  • [24] Selecting structural MRI predictors of cognitive status in MS patients through a machine learning approach applied to a large multicenter MS population
    d'Ambrosio, A.
    Marzi, C.
    Bisecco, A.
    Diciotti, S.
    Altieri, M.
    Battaglini, M.
    De Stefano, N.
    Pagani, E.
    Pantano, P.
    Piervincenzi, C.
    Rocca, M. A.
    Storelli, L.
    Filippi, M.
    Tedeschi, G.
    Gallo, A.
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (2_SUPPL) : 85 - 86
  • [25] Feasibility study to identify machine learning predictors for a Virtual Environment Grocery Store
    Parsons, Thomas D.
    Mcmahan, Timothy
    Asbee, Justin
    VIRTUAL REALITY, 2024, 28 (01)
  • [26] Feasibility study to identify machine learning predictors for a Virtual Environment Grocery Store
    Thomas D. Parsons
    Timothy McMahan
    Justin Asbee
    Virtual Reality, 2024, 28
  • [27] Machine learning models identify gene predictors of waggle dance behaviour in honeybees
    Veiner, Marcell
    Morimoto, Juliano
    Leadbeater, Ellouise
    Manfredini, Fabio
    MOLECULAR ECOLOGY RESOURCES, 2022, 22 (06) : 2248 - 2261
  • [28] Machine learning and phylogenetic models identify predictors of genetic variation in Neotropical amphibians
    Amador, Luis
    Arroyo-Torres, Irvin
    Barrow, Lisa N.
    JOURNAL OF BIOGEOGRAPHY, 2024, 51 (05) : 909 - 923
  • [29] Machine learning approach to identify users across their digital devices
    Renov, Oleksii
    Raj, Thakur
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1676 - 1680
  • [30] A Machine Learning based Approach to Identify SQL Injection Vulnerabilities
    Zhang, Kevin
    34TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE 2019), 2019, : 1286 - 1288