Machine learning approach to identify early predictors of MS progression: the NeuroArtP3 project

被引:0
|
作者
Poretto, Valentina [1 ]
Lapucci, Caterina [2 ]
Betti, Matteo [3 ]
Bellinvia, Angelo [3 ]
Endrizzi, Walter [4 ]
Ragni, Flavio [4 ]
Bovo, Stefano [4 ]
Longo, Chiara [1 ]
Carpi, Elisabetta [2 ]
Moroni, Monica [4 ]
Chierici, Marco [4 ]
Jurman, Giuseppe [4 ]
Osmani, Venet [2 ]
Piana, Michele [5 ]
Marenco, Manuela [2 ]
Marangoni, Sabrina [1 ]
Portaccio, Emilio [3 ]
Giometto, Bruno [1 ,6 ]
Inglese, Matilde [2 ,7 ]
Antonio, Ucccelli [2 ]
Amato, Maria Pia [3 ,8 ]
机构
[1] Azienda Prov Serv Sanit APSS, Neurol Unit, Trento, Italy
[2] IRCCS Osped Policlin San Martino, Genoa, Italy
[3] Univ Florence, Dept NEUROFARBA, Florence, Italy
[4] Fdn Bruno Kessler, Data Sci Hlth, Trento, Italy
[5] Univ Genoa, IRCCS Osped Policlin San Martino, Dipartimento Matemat, Genoa, Italy
[6] Univ Trento, Ctr Interdipartimentale Sci Med CISMed, Fac Med & Chirurg, Trento, Italy
[7] Univ Genoa, Dept Neurol Rehabil Ophthalmol Genet Maternal & C, Genoa, Italy
[8] IRCCS Don Carlo Gnocchi Fdn, Florence, Italy
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1577/791
引用
收藏
页码:997 / 997
页数:1
相关论文
共 50 条
  • [31] A Hybrid Approach Based on Machine Learning to Identify the Causes of Obesity
    Taghiyev, Anar
    Altun, Adem Alpaslan
    Caglar, Sona
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2020, 22 (02): : 56 - 66
  • [32] Using Machine Learning Approach to Identify Synonyms for Document Mining
    Trappey, Amy J. C.
    Trappey, Charles V.
    Wu, Jheng-Long
    Tsai, Kevin T. -C
    TRANSDISCIPLINARY ENGINEERING FOR COMPLEX SOCIO-TECHNICAL SYSTEMS, 2019, 10 : 509 - 518
  • [33] Machine Learning Approach to Identify Stroke Within 4.5 Hours
    Lee, Hyunna
    Lee, Eun-Jae
    Ham, Sungwon
    Lee, Han-Bin
    Lee, Ji Sung
    Kwon, Sun U.
    Kim, Jong S.
    Kim, Namkug
    Kang, Dong-Wha
    STROKE, 2020, 51 (03) : 860 - 866
  • [34] A Machine Learning Approach To Identify Hydrogenosomal Proteins in Trichomonas vaginalis
    Burstein, David
    Gould, Sven B.
    Zimorski, Verena
    Kloesges, Thorsten
    Kiosse, Fuat
    Major, Peter
    Martin, William F.
    Pupko, Tal
    Dagan, Tal
    EUKARYOTIC CELL, 2012, 11 (02) : 217 - 228
  • [35] A Machine Learning Approach to Identify the Preferred Representational System of a Person
    Amirhosseini, Mohammad Hossein
    Wall, Julie
    MULTIMODAL TECHNOLOGIES AND INTERACTION, 2022, 6 (12)
  • [36] An interpretable machine learning approach to identify mechanism of action of antibiotics
    Mongia, Mihir
    Guler, Mustafa
    Mohimani, Hosein
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] An interpretable machine learning approach to identify mechanism of action of antibiotics
    Mihir Mongia
    Mustafa Guler
    Hosein Mohimani
    Scientific Reports, 12
  • [38] Can Machine Learning and MRI Identify COPD Patients at Risk of Accelerated Progression?
    Ly, C. Ong
    Westcott, A.
    Dhaliwal, I.
    Fenster, A.
    Kirby, M.
    Parraga, G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199
  • [39] Multimodal Machine Learning to Identify Risk of Progression in Asymptomatic Alzheimer's Disease
    Tandon, Raghav
    Watson, Caroline M.
    Seyfried, Nicholas T.
    Lah, James J.
    Mitchell, Cassie S.
    ANNALS OF NEUROLOGY, 2022, 92 : S56 - S56
  • [40] LiP-MS, a machine learning-based chemoproteomic approach to identify drug targets in complex proteomes.
    Beaton, Nigel
    Feng, Yuehan
    Bruderer, Roland
    Hendricks, Adam
    Hamza, Ghaith
    Miele, Eric
    Davies, Rick
    Beeler, Kristina
    Piazza, Ilaria
    Picotti, Paola
    Castaldi, Paola
    Reiter, Lukas
    CANCER RESEARCH, 2021, 81 (13)