A MACHINE LEARNING APPROACH TO IDENTIFY CHILD OPPORTUNITY PREDICTORS ASSOCIATED WITH FIREARM INJURY

被引:0
|
作者
Reddy, Anireddy [1 ]
Woods-Hill, Charlotte [1 ]
Penney, Chris [1 ]
Tam, Vicky [1 ]
Novick, Dorothy [1 ]
Fein, Joel [1 ]
Yehya, Nadir [1 ]
机构
[1] Childrens Hosp Philadelphia, Philadelphia, PA USA
关键词
D O I
10.1097/01.ccm.0001102236.24045.46
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Child opportunity index is associated with pediatric firearm injury in Philadelphia, Pennsylvania
    Reddy, Anireddy R.
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [2] Predictors of firearm violence in urban communities: A machine-learning approach
    Goin, Dana E.
    Rudolph, Kara E.
    Ahern, Jennifer
    HEALTH & PLACE, 2018, 51 : 61 - 67
  • [3] A Machine Learning Approach to Identify Predictors of Mortality in Patients With Atherosclerotic Cardiovascular Disease
    Dikilitas, Ozan
    He Baosheng
    Kullo, Iftikhar
    CIRCULATION, 2018, 138
  • [4] A machine-learning prediction model to identify risk of firearm injury using electronic health records data
    Zhou, Hui
    Nau, Claudia
    Xie, Fagen
    Contreras, Richard
    Grant, Deborah Ling
    Negriff, Sonya
    Sidell, Margo
    Koebnick, Corinna
    Hechter, Rulin
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (10) : 2173 - 2180
  • [5] A MACHINE LEARNING APPROACH TO IDENTIFY FACTORS ASSOCIATED WITH ADOLESCENT SLEEP OUTCOMES
    Ricketts, Emily
    Kaplan, Katherine
    McMakin, Dana
    Patriarca, Guadalupe
    Mathew, Gina
    McGrew, Tylor
    Chang, Anne-Marie
    Hale, Lauren
    SLEEP, 2024, 47
  • [6] A Machine Learning Approach to Identify Predictors of Frequent Vaping and Vulnerable Californian Youth Subgroups
    Fu, Rui
    Shi, Jiamin
    Chaiton, Michael
    Leventhal, Adam M.
    Unger, Jennifer B.
    Barrington-Trimis, Jessica L.
    NICOTINE & TOBACCO RESEARCH, 2022, 24 (07) : 1028 - 1036
  • [7] Machine Learning Methods to Identify Predictors of Psychological Distress
    Chen, Yang
    Zhang, Xiaomei
    Lu, Lin
    Wang, Yinzhi
    Liu, Jiajia
    Qin, Lei
    Ye, Linglong
    Zhu, Jianping
    Shia, Ben-Chang
    Chen, Ming-Chih
    PROCESSES, 2022, 10 (05)
  • [8] A novel machine-learning tool to identify community risk for firearm violence: The Firearm Violence Vulnerability Index
    Polcari, Ann M.
    Hoefer, Lea E.
    Zakrison, Tanya L.
    Cone, Jennifer T.
    Henry, Marion C. W.
    Rogers, Selwyn O.
    Slidell, Mark B.
    Benjamin, Andrew J.
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2023, 95 (01): : 128 - 136
  • [9] Machine learning approach to identify early predictors of MS progression: the NeuroArtP3 project
    Poretto, Valentina
    Lapucci, Caterina
    Betti, Matteo
    Bellinvia, Angelo
    Endrizzi, Walter
    Ragni, Flavio
    Bovo, Stefano
    Longo, Chiara
    Carpi, Elisabetta
    Moroni, Monica
    Chierici, Marco
    Jurman, Giuseppe
    Osmani, Venet
    Piana, Michele
    Marenco, Manuela
    Marangoni, Sabrina
    Portaccio, Emilio
    Giometto, Bruno
    Inglese, Matilde
    Antonio, Ucccelli
    Amato, Maria Pia
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 997 - 997
  • [10] THE EVOLUTION OF INEQUALITY OF OPPORTUNITY IN GERMANY: A MACHINE LEARNING APPROACH
    Brunori, Paolo
    Neidhofer, Guido
    REVIEW OF INCOME AND WEALTH, 2021, 67 (04) : 900 - 927