Bound state solutions of the Dunkl-Schrödinger equation for the sextic anharmonic oscillator potential

被引:0
|
作者
Schulze-Halberg, Axel [1 ,2 ]
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, 3400 Broadway, Gary, IN 46408 USA
[2] Indiana Univ Northwest, Dept Phys, 3400 Broadway, Gary, IN 46408 USA
关键词
Dunkl operator; Schr & ouml; dinger equation; sextic anharmonic oscillator potential; biconfluent Heun function; bound states;
D O I
10.1142/S0217732324501785
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the one-dimensional Schr & ouml;dinger equation for the sextic anharmonic oscillator potential within the Dunkl formalism. Solutions of bound state type are constructed, and results are compared to the conventional scenario.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Inverse Scattering Transform and Multi-soliton Solutions for the Sextic Nonlinear Schrödinger Equation
    Xin Wu
    Shou-fu Tian
    Jin-Jie Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 536 - 555
  • [32] Generalized tanh-shaped hyperbolic potential: bound state solution of Schrödinger equation
    H. I. Ahmadov
    E. A. Dadashov
    N. Sh. Huseynova
    V. H. Badalov
    The European Physical Journal Plus, 136
  • [33] Exact solutions to the Schrodinger equation for the anharmonic oscillator potential
    Lu, Fa-Lin
    Chen, Chang-Yuan
    Wuli Xuebao/Acta Physica Sinica, 2004, 53 (03): : 688 - 692
  • [34] Exact solutions to the Schrodinger equation for the anharmonic oscillator potential
    Lu, FL
    Chen, CY
    ACTA PHYSICA SINICA, 2004, 53 (03) : 688 - 692
  • [35] Exact solutions of the Schrödinger equation with a complex periodic potential
    Shi-Hai Dong
    Guo-Hua Sun
    Journal of Mathematical Chemistry, 2023, 61 : 1684 - 1695
  • [36] Approximate analytical solutions of the stationary radial Schrödinger equation with new anharmonic potentials
    Damian Mikulski
    Krzysztof Eder
    Jerzy Konarski
    Journal of Mathematical Chemistry, 2014, 52 : 1364 - 1371
  • [37] SchrÖdinger equation with Coulomb potential admits no exact solutions
    Toli I.
    Zou S.
    Chemical Physics Letters: X, 2019, 2
  • [38] Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing
    Yan-fang Xue
    Jian-xin Han
    Xin-cai Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 696 - 706
  • [39] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706
  • [40] Existence of a positive bound state solution for logarithmic Schrödinger equation
    Feng, Weixun
    Tang, Xianhua
    Zhang, Luyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)