Bound state solutions of the Dunkl-Schrödinger equation for the sextic anharmonic oscillator potential

被引:0
|
作者
Schulze-Halberg, Axel [1 ,2 ]
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, 3400 Broadway, Gary, IN 46408 USA
[2] Indiana Univ Northwest, Dept Phys, 3400 Broadway, Gary, IN 46408 USA
关键词
Dunkl operator; Schr & ouml; dinger equation; sextic anharmonic oscillator potential; biconfluent Heun function; bound states;
D O I
10.1142/S0217732324501785
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the one-dimensional Schr & ouml;dinger equation for the sextic anharmonic oscillator potential within the Dunkl formalism. Solutions of bound state type are constructed, and results are compared to the conventional scenario.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A large class of bound-state solutions of the Schrödinger equation via Laplace transform of the confluent hypergeometric equation
    P. H. F. Nogueira
    A. S. de Castro
    D. R. M. Pimentel
    Journal of Mathematical Chemistry, 2016, 54 : 1287 - 1295
  • [42] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [43] Bound state solutions of sublinear Schrödinger equations with lack of compactness
    Anouar Bahrouni
    Hichem Ounaies
    Vicenţiu D. Rădulescu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1191 - 1210
  • [44] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [45] Anharmonic solution of Schrödinger time-independent equation
    MOHAMMED ASHRAFUL ISLAM
    JAMAL NAZRUL ISLAM
    Pramana, 2011, 77 : 243 - 261
  • [46] Least energy solutions for a quasilinear Schrödinger equation with potential well
    Yujuan Jiao
    Boundary Value Problems, 2013
  • [47] Approximate Solutions of the Schrödinger Equation with the Hyperbolical Potential: Supersymmetric Approach
    C. A. Onate
    K. J. Oyewumi
    B. J. Falaye
    Few-Body Systems, 2014, 55 : 61 - 67
  • [48] Solving the bound-state Schrödinger equation by reproducing kernel interpolation
    Hu, Xu-Guang
    Ho, Tak-San
    Rabitz, Herschel
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (02): : 2074 - 2085
  • [49] Exact solutions of the Schr?dinger equation for a class of hyperbolic potential well
    王晓华
    陈昌远
    尤源
    陆法林
    孙东升
    董世海
    Chinese Physics B, 2022, (04) : 54 - 60
  • [50] Multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb potential
    Dong, Fangyuan
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 487 - 508