Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing

被引:0
|
作者
Yan-fang Xue
Jian-xin Han
Xin-cai Zhu
机构
[1] Xinyang Normal University,School of Mathematics and Statistics
关键词
quasilinear Schrödinger equation; vanishing potential; asymptotically cubic; mountain pass theorem; 35J60; 35J62; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following quasilinear Schrödinger equation −Δu+V(x)u−Δ(u2)u=K(x)g(u),x∈ℝ3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u + V(x)u - \Delta ({u^2})u = K(x)g(u),\,\,\,\,\,\,\,\,x \in {\mathbb{R}^3},$$\end{document} where the nonlinearity g(u) is asymptotically cubic at infinity, the potential V(x) may vanish at infinity. Under appropriate assumptions on K(x), we establish the existence of a nontrivial solution by using the mountain pass theorem.
引用
收藏
页码:696 / 706
页数:10
相关论文
共 50 条
  • [1] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706
  • [2] Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity
    Guo, Xiaojie
    Han, Zhiqing
    AIMS MATHEMATICS, 2023, 8 (11): : 27684 - 27711
  • [3] Existence of Solutions for a Quasilinear Schrodinger Equation with Potential Vanishing
    Xue, Yan-fang
    Han, Jian-xin
    Zhu, Xin-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (03): : 696 - 706
  • [4] Existence and asymptotic properties of positive solutions for a general quasilinear Schrödinger equation
    Xiang Zhang
    Yimin Zhang
    Boundary Value Problems, 2019
  • [5] Least energy solutions for a quasilinear Schrödinger equation with potential well
    Yujuan Jiao
    Boundary Value Problems, 2013
  • [6] On the existence of soliton solutions to quasilinear Schrödinger equations
    Markus Poppenberg
    Klaus Schmitt
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2002, 14 : 329 - 344
  • [7] On the existence of nontrivial solutions for quasilinear Schrödinger systems
    Guofa Li
    Boundary Value Problems, 2022
  • [8] Ground State Solutions for a Quasilinear Schrödinger Equation
    Jian Zhang
    Xiaoyan Lin
    Xianhua Tang
    Mediterranean Journal of Mathematics, 2017, 14
  • [9] Multiple soliton solutions for a quasilinear Schrödinger equation
    Jiayin Liu
    Duchao Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 75 - 90
  • [10] Existence of positive solutions for a critical nonlinear Schrödinger equation with vanishing or coercive potentials
    Shaowei Chen
    Boundary Value Problems, 2013