Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing

被引:0
|
作者
Yan-fang Xue
Jian-xin Han
Xin-cai Zhu
机构
[1] Xinyang Normal University,School of Mathematics and Statistics
关键词
quasilinear Schrödinger equation; vanishing potential; asymptotically cubic; mountain pass theorem; 35J60; 35J62; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following quasilinear Schrödinger equation −Δu+V(x)u−Δ(u2)u=K(x)g(u),x∈ℝ3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \Delta u + V(x)u - \Delta ({u^2})u = K(x)g(u),\,\,\,\,\,\,\,\,x \in {\mathbb{R}^3},$$\end{document} where the nonlinearity g(u) is asymptotically cubic at infinity, the potential V(x) may vanish at infinity. Under appropriate assumptions on K(x), we establish the existence of a nontrivial solution by using the mountain pass theorem.
引用
收藏
页码:696 / 706
页数:10
相关论文
共 50 条
  • [31] Low Regularity Solutions for the General Quasilinear Ultrahyperbolic Schrödinger Equation
    Pineau, Ben
    Taylor, Mitchell A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [32] Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity
    Gu, Guangze
    Tang, Xianhua
    Zhang, Youpei
    Applied Mathematics Letters, 2020, 99
  • [33] Existence and concentration of positive solutions for a Schrödinger logarithmic equation
    Claudianor O. Alves
    Daniel C.  de Morais Filho
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [34] The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations
    Wang, Kun
    Huang, Chen
    Jia, Gao
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [35] Existence of solutions for asymptotically periodic quasilinear Schrödinger equations with local nonlinearities
    Han, Jian-Xin
    Wei, Yu -Ting
    Xue, Yan-Fang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (18) : 1 - 18
  • [36] RETRACTED ARTICLE: Existence of global solutions to a quasilinear Schrödinger equation with general nonlinear optimal control conditions
    Yisheng Hu
    Songhai Qin
    Zhibin Liu
    Yi Wang
    Boundary Value Problems, 2020
  • [37] Retraction Note: Existence of global solutions to a quasilinear Schrödinger equation with general nonlinear optimal control conditions
    Yisheng Hu
    Songhai Qin
    Zhibin Liu
    Yi Wang
    Boundary Value Problems, 2021
  • [38] Normalized Solutions to the Fractional Schrödinger Equation with Potential
    Jiabin Zuo
    Chungen Liu
    Calogero Vetro
    Mediterranean Journal of Mathematics, 2023, 20
  • [39] Bound state solutions for quasilinear Schrödinger equations with Hardy potential
    Xue, Yanfang
    Gu, Wenjing
    Han, Jianxin
    RESULTS IN APPLIED MATHEMATICS, 2024, 24
  • [40] Existence of Semiclassical States for a Quasilinear Schr?dinger Equation on RN with Exponential Critical Growth
    Shao Jun LI
    Carlos A.SANTOS
    Min Bo YANG
    Acta Mathematica Sinica,English Series, 2016, 32 (11) : 1279 - 1296