Testing Bayesian inference of GRMHD model parameters from VLBI data

被引:0
|
作者
Yfantis, A., I [1 ]
Zhao, S. [2 ]
Gold, R. [3 ,4 ,5 ,6 ]
Moscibrodzka, M. [1 ]
Broderick, A. E. [7 ,8 ,9 ]
机构
[1] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands
[2] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[3] Heidelberg Univ, Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[7] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[8] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Waterloo Ctr Astrophys, Waterloo, ON N2L 3G1, Canada
基金
荷兰研究理事会;
关键词
accretion; accretion discs; black hole physics; methods: data analysis; methods: statistical; techniques: high angular resolution; quasars: supermassive black holes; SAGITTARIUS A-ASTERISK; MAGNETIC-FIELD STRUCTURE; SUPERMASSIVE BLACK-HOLE; EVENT-HORIZON; DIFFERENTIAL EVOLUTION; SCHWARZSCHILD RADII; ACCRETION; SIMULATIONS; JET; VARIABILITY;
D O I
10.1093/mnras/stae2509
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images (similar to 2 million for Sgr A*) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations and enables expansion of the model parameter space in a statistically robust and computationally efficient manner.
引用
收藏
页码:3181 / 3197
页数:17
相关论文
共 50 条
  • [41] Weighting for Combinatorial Testing by Bayesian Inference
    Choi, Eun-Hye
    Fujiwara, Tsuyoshi
    Mizuno, Osamu
    10TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS - ICSTW 2017, 2017, : 389 - 391
  • [42] Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate
    Giraldi, Loic
    Le Maitre, Olivier P.
    Mandli, Kyle T.
    Dawson, Clint N.
    Hoteit, Ibrahim
    Knio, Omar M.
    COMPUTATIONAL GEOSCIENCES, 2017, 21 (04) : 683 - 699
  • [43] Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate
    Loïc Giraldi
    Olivier P. Le Maître
    Kyle T. Mandli
    Clint N. Dawson
    Ibrahim Hoteit
    Omar M. Knio
    Computational Geosciences, 2017, 21 : 683 - 699
  • [44] Bayesian inference of spatial covariance parameters
    Pardo-Igúzquiza, E
    MATHEMATICAL GEOLOGY, 1999, 31 (01): : 47 - 65
  • [45] Exact Bayesian inference of epidemiological parameters from mortality data: application to African swine fever virus
    Ewing, David A.
    Pooley, Christopher M.
    Gamado, Kokouvi M.
    Porphyre, Thibaud
    Marion, Glenn
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (188)
  • [46] Bayesian inference to identify parameters in viscoelasticity
    Hussein Rappel
    Lars A. A. Beex
    Stéphane P. A. Bordas
    Mechanics of Time-Dependent Materials, 2018, 22 : 221 - 258
  • [47] Bayesian inference to identify parameters in viscoelasticity
    Rappel, Hussein
    Beex, Lars A. A.
    Bordas, Stephane P. A.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2018, 22 (02) : 221 - 258
  • [48] Robust Bayesian inference on scale parameters
    Fernández, C
    Osiewalski, J
    Steel, MFJ
    JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (01) : 54 - 72
  • [49] Adjusted Bayesian inference for selected parameters
    Yekutieli, Daniel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 : 515 - 541
  • [50] Bayesian Inference of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1999, 31 (1): : 47 - 65