Testing Bayesian inference of GRMHD model parameters from VLBI data

被引:0
|
作者
Yfantis, A., I [1 ]
Zhao, S. [2 ]
Gold, R. [3 ,4 ,5 ,6 ]
Moscibrodzka, M. [1 ]
Broderick, A. E. [7 ,8 ,9 ]
机构
[1] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands
[2] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[3] Heidelberg Univ, Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[7] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[8] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Waterloo Ctr Astrophys, Waterloo, ON N2L 3G1, Canada
基金
荷兰研究理事会;
关键词
accretion; accretion discs; black hole physics; methods: data analysis; methods: statistical; techniques: high angular resolution; quasars: supermassive black holes; SAGITTARIUS A-ASTERISK; MAGNETIC-FIELD STRUCTURE; SUPERMASSIVE BLACK-HOLE; EVENT-HORIZON; DIFFERENTIAL EVOLUTION; SCHWARZSCHILD RADII; ACCRETION; SIMULATIONS; JET; VARIABILITY;
D O I
10.1093/mnras/stae2509
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images (similar to 2 million for Sgr A*) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations and enables expansion of the model parameter space in a statistically robust and computationally efficient manner.
引用
收藏
页码:3181 / 3197
页数:17
相关论文
共 50 条
  • [21] Bayesian inference of linear sine-fitting parameters from integrating digital voltmeter data
    Kyriazis, GA
    de Campos, MLR
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (02) : 337 - 346
  • [22] Bayesian Tangent Shape Model: Estimating shape and pose parameters via Bayesian inference
    Zhou, Y
    Gu, L
    Zhang, HJ
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 109 - 116
  • [23] Data Augmentation MCMC for Bayesian Inference from Privatized Data
    Ju, Nianqiao Phyllis
    Awan, Jordan A.
    Gong, Ruobin
    Rao, Vinayak A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] A Bayesian inference approach for the updating of spatially distributed corrosion model parameters based on heterogeneous measurement data
    Vereecken, Eline
    Botte, Wouter
    Lombaert, Geert
    Caspeele, Robby
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2022, 18 (01) : 30 - 46
  • [25] Bayesian calibration of strength model parameters from Taylor impact data
    Rivera, David
    Bernstein, Jason
    Schmidt, Kathleen
    Muyskens, Amanda
    Nelms, Matthew
    Barton, Nathan
    Kupresanin, Ana
    Florando, Jeff
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [27] Inferring the jet parameters of active galactic nuclei using Bayesian analysis of VLBI data with a non-uniform jet model
    Pashchenko, Ilya N.
    Plavin, Alexander V.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (01) : 939 - 953
  • [28] Bayesian-Assisted Inference from Visualized Data
    Kim, Yea-Seul
    Kayongo, Paula
    Grunde-McLaughlin, Madeleine
    Hullman, Jessica
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 989 - 999
  • [29] A BAYESIAN PERSPECTIVE ON INFERENCE FROM MACROECONOMIC DATA - COMMENT
    JOHANSEN, S
    SCANDINAVIAN JOURNAL OF ECONOMICS, 1991, 93 (02): : 249 - 251
  • [30] Bayesian spike inference from calcium imaging data
    Pnevmatikakis, Eftychios A.
    Merel, Josh
    Pakman, Ari
    Paninski, Liam
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 349 - 353