Testing Bayesian inference of GRMHD model parameters from VLBI data

被引:0
|
作者
Yfantis, A., I [1 ]
Zhao, S. [2 ]
Gold, R. [3 ,4 ,5 ,6 ]
Moscibrodzka, M. [1 ]
Broderick, A. E. [7 ,8 ,9 ]
机构
[1] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands
[2] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[3] Heidelberg Univ, Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[7] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[8] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Waterloo Ctr Astrophys, Waterloo, ON N2L 3G1, Canada
基金
荷兰研究理事会;
关键词
accretion; accretion discs; black hole physics; methods: data analysis; methods: statistical; techniques: high angular resolution; quasars: supermassive black holes; SAGITTARIUS A-ASTERISK; MAGNETIC-FIELD STRUCTURE; SUPERMASSIVE BLACK-HOLE; EVENT-HORIZON; DIFFERENTIAL EVOLUTION; SCHWARZSCHILD RADII; ACCRETION; SIMULATIONS; JET; VARIABILITY;
D O I
10.1093/mnras/stae2509
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images (similar to 2 million for Sgr A*) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations and enables expansion of the model parameter space in a statistically robust and computationally efficient manner.
引用
收藏
页码:3181 / 3197
页数:17
相关论文
共 50 条
  • [31] Bayesian Inference of Species Trees from Multilocus Data
    Heled, Joseph
    Drummond, Alexei J.
    MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (03) : 570 - 580
  • [32] Bayesian inference of network structure from unreliable data
    Young, Jean-Gabriel
    Cantwell, George T.
    Newman, M. E. J.
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (06) : 1 - 26
  • [33] Bayesian inference of protein ensembles from SAXS data
    Antonov, L. D.
    Olsson, S.
    Boomsma, W.
    Hamelryck, T.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (08) : 5832 - 5838
  • [34] Mechanical equivalent of Bayesian inference from monitoring data
    Cappello, Carlo
    Bolognani, Denise
    Zonta, Daniele
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2016, 2016, 9803
  • [35] Bayesian Inference of Ecological Interactions from Spatial Data
    Stephens, Christopher R.
    Sanchez-Cordero, Victor
    Gonzalez Salazar, Constantino
    ENTROPY, 2017, 19 (12)
  • [36] Bayesian inference of BWR model parameters by Markov chain Monte Carlo
    Zio, E.
    Zoia, A.
    ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) : 1929 - 1936
  • [37] Estimation of kinetic parameters in a chromatographic separation model via Bayesian inference
    Oliveira, C.
    Lugon Junior, J.
    Knupp, D. C.
    Silva Neto, A. J.
    Prieto-Moreno, A.
    Llanes-Santiago, O.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [38] Inference of reactive transport model parameters using a Bayesian multivariate approach
    Carniato, Luca
    Schoups, Gerrit
    van de Giesen, Nick
    WATER RESOURCES RESEARCH, 2014, 50 (08) : 6406 - 6427
  • [39] Model-based Bayesian Inference for ROC Data Analysis
    Lei, Tianhu
    Bae, K. Ty
    MEDICAL IMAGING 2013: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2013, 8673
  • [40] Parameters estimation algorithm of multivariate atmospheric noise model by Bayesian inference
    Ying, W. (yingwenwei@sina.com), 1600, Huazhong University of Science and Technology (41):