Testing Bayesian inference of GRMHD model parameters from VLBI data

被引:0
|
作者
Yfantis, A., I [1 ]
Zhao, S. [2 ]
Gold, R. [3 ,4 ,5 ,6 ]
Moscibrodzka, M. [1 ]
Broderick, A. E. [7 ,8 ,9 ]
机构
[1] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands
[2] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[3] Heidelberg Univ, Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[7] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[8] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Waterloo Ctr Astrophys, Waterloo, ON N2L 3G1, Canada
基金
荷兰研究理事会;
关键词
accretion; accretion discs; black hole physics; methods: data analysis; methods: statistical; techniques: high angular resolution; quasars: supermassive black holes; SAGITTARIUS A-ASTERISK; MAGNETIC-FIELD STRUCTURE; SUPERMASSIVE BLACK-HOLE; EVENT-HORIZON; DIFFERENTIAL EVOLUTION; SCHWARZSCHILD RADII; ACCRETION; SIMULATIONS; JET; VARIABILITY;
D O I
10.1093/mnras/stae2509
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images (similar to 2 million for Sgr A*) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations and enables expansion of the model parameter space in a statistically robust and computationally efficient manner.
引用
收藏
页码:3181 / 3197
页数:17
相关论文
共 50 条
  • [1] Bayesian inference of root architectural model parameters from synthetic field data
    Morandage, Shehan
    Laloy, Eric
    Schnepf, Andrea
    Vereecken, Harry
    Vanderborght, Jan
    PLANT AND SOIL, 2021, 467 (1-2) : 67 - 89
  • [2] Bayesian inference of root architectural model parameters from synthetic field data
    Shehan Morandage
    Eric Laloy
    Andrea Schnepf
    Harry Vereecken
    Jan Vanderborght
    Plant and Soil, 2021, 467 : 67 - 89
  • [3] Bayesian inference for data analysis of fatigue testing
    De Iorio, A.
    Penta, F.
    Pinto, P.
    Guida, M.
    FRATTURA ED INTEGRITA STRUTTURALE, 2008, (06): : 11 - 19
  • [4] LEARNING RANS MODEL PARAMETERS FROM LES USING BAYESIAN INFERENCE
    Hemchandra, Santosh
    Datta, Anindya
    Juniper, Matthew P.
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3A, 2023,
  • [5] Nuclear data adjustment using Bayesian inference, diagnostics for model fit and influence of model parameters
    Kumar, D.
    Alam, S. B.
    Sjostrand, H.
    Palau, J. M.
    De Saint Jean, C.
    ND 2019: INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, 2020, 239
  • [6] Bayesian inference for parameters estimation using experimental data
    Pepi, Chiara
    Gioffre, Massimiliano
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [7] Bayesian inference of molecular kinetic parameters from astrocyte calcium imaging data
    Maly, Ivan, V
    Hofmann, Wilma A.
    METHODSX, 2022, 9
  • [8] Bayesian inference of constitutive parameters from video data of the impact dynamics of a ball
    Fernando S. Buezas
    Nicolás Fochesatto
    Marta B. Rosales
    Walter Tuckart
    Archive of Applied Mechanics, 2020, 90 : 1795 - 1810
  • [9] Bayesian inference of constitutive parameters from video data of the impact dynamics of a ball
    Buezas, Fernando S.
    Fochesatto, Nicolas
    Rosales, Marta B.
    Tuckart, Walter
    ARCHIVE OF APPLIED MECHANICS, 2020, 90 (08) : 1795 - 1810
  • [10] Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi
    Sraj, Ihab
    Iskandarani, Mohamed
    Srinivasan, Ashwanth
    Thacker, W. Carlisle
    Winokur, Justin
    Alexanderian, Alen
    Lee, Chia-Ying
    Chen, Shuyi S.
    Knio, Omar M.
    MONTHLY WEATHER REVIEW, 2013, 141 (07) : 2347 - 2367