The hard Lefschetz duality for locally conformally almost Kähler manifolds

被引:0
|
作者
Kanda, Shuho [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro, Tokyo 1538914, Japan
关键词
KAHLER;
D O I
10.1016/j.difgeo.2025.102239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the hard Lefschetz duality for locally conformally almost K & auml;hler manifolds. This is a generalization of that for almost K & auml;hler manifolds studied by Cirici and Wilson. We generalize the K & auml;hler identities to prove the duality. Based on the result, we introduce the hard Lefschetz condition for locally conformally symplectic manifolds. As examples, we give solvmanifolds which do not satisfy the hard Lefschetz condition. (c) 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On toric locally conformally Kähler manifolds
    Farid Madani
    Andrei Moroianu
    Mihaela Pilca
    Annals of Global Analysis and Geometry, 2017, 51 : 401 - 417
  • [2] Transformations of locally conformally Kähler manifolds
    Andrei Moroianu
    Liviu Ornea
    manuscripta mathematica, 2009, 130 : 93 - 100
  • [3] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [4] On harmonic symmetries for locally conformally Kähler manifolds
    Teng Huang
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2241 - 2259
  • [5] Isometric immersions of locally conformally Kähler manifolds
    Daniele Angella
    Michela Zedda
    Annals of Global Analysis and Geometry, 2019, 56 : 37 - 55
  • [6] Holomorphic submersions of locally conformally Kähler manifolds
    Liviu Ornea
    Maurizio Parton
    Victor Vuletescu
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1345 - 1351
  • [7] Compact complex manifolds bimeromorphic to locally conformally Kähler manifolds
    Hirokazu Shimobe
    Geometriae Dedicata, 2018, 197 : 49 - 60
  • [8] Hopf surfaces in locally conformally Kähler manifolds with potential
    Liviu Ornea
    Misha Verbitsky
    Geometriae Dedicata, 2020, 207 : 219 - 226
  • [9] On locally conformally Kähler metrics on Oeljeklaus–Toma manifolds
    Ştefan Deaconu
    Victor Vuletescu
    manuscripta mathematica, 2023, 171 : 643 - 647
  • [10] A note on Euler number of locally conformally Kähler manifolds
    Teng Huang
    Mathematische Zeitschrift, 2020, 296 : 1725 - 1733