Unsupervised Clustering Using a Variational Autoencoder with Constrained Mixtures for Posterior and Prior

被引:0
|
作者
Chowdhury, Mashfiqul Huq [1 ]
Hirose, Yuichi [1 ]
Marsland, Stephen [1 ]
Yao, Yuan [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Clustering; GMM; Latent Space; Mixture VAE; Representation Learning;
D O I
10.1007/978-981-96-0116-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering high-dimensional unlabelled data is a challenging task. We propose a probabilistic generative model based on the variational autoencoder (VAE) that learns the underlying statistical distribution of the dataset and performs cluster analysis. We assume a mixture distribution for both the posterior and prior components and derive the evidence lower bound of our mixtures VAE algorithm, which integrates the clustering distribution within each component of the VAE framework. We explicitly use the EM algorithm to find the clustering assignment estimate and model parameters. We also propose a constrained version of the mixtures VAE model to balance the reconstruction and regularization components during optimization. The experimental results of our proposed model demonstrate superior clustering performance compared to baseline algorithms. Moreover, the proposed model generates realistic examples from specified clusters in the latent space.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [41] Unsupervised varistor surface defect detection based on variational autoencoder
    Tang S.
    Chen M.
    Wang H.
    Zhang X.
    Zhang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (05): : 1337 - 1351
  • [42] VARIATIONAL AUTOENCODER BASED UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2426 - 2430
  • [43] Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder
    Chen, Tingting
    Liu, Xueping
    Xia, Bizhong
    Wang, Wei
    Lai, Yongzhi
    IEEE ACCESS, 2020, 8 : 47072 - 47081
  • [44] TOWARD UNSUPERVISED 3D POINT CLOUD ANOMALY DETECTION USING VARIATIONAL AUTOENCODER
    Masuda, Mana
    Hachiuma, Ryo
    Fujii, Ryo
    Saito, Hideo
    Sekikawa, Yusuke
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3118 - 3122
  • [45] Unsupervised Building Damage Identification Using Post-Event Optical Imagery and Variational Autoencoder
    Lin, Daming
    Wang, Jie
    Li, Yundong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (10) : 1770 - 1774
  • [46] Anomaly Detection Using LSTM-Based Variational Autoencoder in Unsupervised Data in Power Grid
    Guha, Dibyajyoti
    Chatterjee, Rajdeep
    Sikdar, Biplab
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 4313 - 4323
  • [47] Efficient unsupervised variational Bayesian image reconstruction using a sparse gradient prior
    Zheng, Yuling
    Fraysse, Aurelia
    Rodet, Thomas
    NEUROCOMPUTING, 2019, 359 : 449 - 465
  • [48] Constrained clustering with weak label prior
    Jing Zhang
    Ruidong Fan
    Hong Tao
    Jiacheng Jiang
    Chenping Hou
    Frontiers of Computer Science, 2024, 18
  • [49] Detecting and clustering structural damages using modal information and variational autoencoder with triple loss
    Huang, Shieh-Kung
    Li, You-Jing
    Lin, Yi-Xun
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025,
  • [50] Constrained clustering with weak label prior
    Zhang, Jing
    Fan, Ruidong
    Tao, Hong
    Jiang, Jiacheng
    Hou, Chenping
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (03)