Unsupervised Clustering Using a Variational Autoencoder with Constrained Mixtures for Posterior and Prior

被引:0
|
作者
Chowdhury, Mashfiqul Huq [1 ]
Hirose, Yuichi [1 ]
Marsland, Stephen [1 ]
Yao, Yuan [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Clustering; GMM; Latent Space; Mixture VAE; Representation Learning;
D O I
10.1007/978-981-96-0116-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering high-dimensional unlabelled data is a challenging task. We propose a probabilistic generative model based on the variational autoencoder (VAE) that learns the underlying statistical distribution of the dataset and performs cluster analysis. We assume a mixture distribution for both the posterior and prior components and derive the evidence lower bound of our mixtures VAE algorithm, which integrates the clustering distribution within each component of the VAE framework. We explicitly use the EM algorithm to find the clustering assignment estimate and model parameters. We also propose a constrained version of the mixtures VAE model to balance the reconstruction and regularization components during optimization. The experimental results of our proposed model demonstrate superior clustering performance compared to baseline algorithms. Moreover, the proposed model generates realistic examples from specified clusters in the latent space.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation using Maximum Mean Covariance Discrepancy and Variational Autoencoder
    Barreto, Fabian
    Sarvaiya, Jignesh
    Patnaik, Suprava
    Yadav, Sushilkumar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 883 - 891
  • [22] Unsupervised Detection of Apnea Using Commodity RFID Tags With a Recurrent Variational Autoencoder
    Yang, Chao
    Wang, Xuyu
    Mao, Shiwen
    IEEE ACCESS, 2019, 7 : 67526 - 67538
  • [23] Unsupervised Deep Learning for Fault Detection on Spacecraft Using Improved Variational Autoencoder
    Xiang, Gang
    Tao, Ran
    Peng, Yu
    Tian, Kun
    Qu, Chen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5527 - 5531
  • [24] Interpretable Variational Graph Autoencoder with Noninformative Prior
    Sun, Lili
    Liu, Xueyan
    Zhao, Min
    Yang, Bo
    FUTURE INTERNET, 2021, 13 (02): : 1 - 15
  • [25] Unsupervised domain adaptation with Joint Adversarial Variational AutoEncoder
    Li, Yuze
    Zhang, Yan
    Yang, Chunling
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [26] Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder
    Xu, Kunxiong
    Fan, Wentao
    Liu, Xin
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 341 - 352
  • [27] Manifold constrained variational mixtures
    Archambeau, C
    Verleysen, M
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 279 - 284
  • [28] Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
    Sherif F.F.
    Ahmed K.S.
    Journal of Engineering and Applied Science, 2022, 69 (1):
  • [29] Unsupervised Clustering of Quantitative Imaging Phenotypes Using Autoencoder and Gaussian Mixture Model
    Chen, Jianan
    Milot, Laurent
    Cheung, Helen M. C.
    Martel, Anne L.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 575 - 582
  • [30] Unsupervised feature learning and clustering of particles imaged in raw holograms using an autoencoder
    Liu, Zonghua
    Thevar, Thangavel
    Takahashi, Tomoko
    Burns, Nicholas
    Yamada, Takaki
    Sangekar, Mehul
    Lindsay, Dhugal
    Watson, John
    Thornton, Blair
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (10) : 1570 - 1580