Unsupervised Clustering Using a Variational Autoencoder with Constrained Mixtures for Posterior and Prior

被引:0
|
作者
Chowdhury, Mashfiqul Huq [1 ]
Hirose, Yuichi [1 ]
Marsland, Stephen [1 ]
Yao, Yuan [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Clustering; GMM; Latent Space; Mixture VAE; Representation Learning;
D O I
10.1007/978-981-96-0116-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering high-dimensional unlabelled data is a challenging task. We propose a probabilistic generative model based on the variational autoencoder (VAE) that learns the underlying statistical distribution of the dataset and performs cluster analysis. We assume a mixture distribution for both the posterior and prior components and derive the evidence lower bound of our mixtures VAE algorithm, which integrates the clustering distribution within each component of the VAE framework. We explicitly use the EM algorithm to find the clustering assignment estimate and model parameters. We also propose a constrained version of the mixtures VAE model to balance the reconstruction and regularization components during optimization. The experimental results of our proposed model demonstrate superior clustering performance compared to baseline algorithms. Moreover, the proposed model generates realistic examples from specified clusters in the latent space.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [31] Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
    Sherif, Fayroz F.
    Ahmed, Khaled S.
    Journal of Engineering and Applied Science, 2022, 69 (01):
  • [32] Geophysical Inversion Using a Variational Autoencoder to Model an Assembled Spatial Prior Uncertainty
    Lopez-Alvis, J.
    Nguyen, F.
    Looms, M. C.
    Hermans, T.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (03)
  • [33] SAUCIE: Sparse autoencoder for unsupervised clustering, imputation, and embedding
    Amodio, Matthew
    Srinivasan, Krishnan
    van Dijk, David
    Mohsen, Hussein
    Yim, Kristina
    Muhle, Rebecca
    Moon, Kevin
    Montgomery, Ruth
    Noonan, James
    Wolf, Guy
    Krishnaswamy, Smita
    CANCER RESEARCH, 2018, 78 (13)
  • [34] A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder
    Kou, Wenjun
    Carlson, Dustin A.
    Baumann, Alexandra J.
    Donnan, Erica
    Luo, Yuan
    Pandolfino, John E.
    Etemadi, Mozziyar
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 112
  • [35] A Geologically Constrained Variational Autoencoder for Mineral Prospectivity Mapping
    Zuo, Renguang
    Luo, Zijing
    Xiong, Yihui
    Yin, Bojun
    NATURAL RESOURCES RESEARCH, 2022, 31 (03) : 1121 - 1133
  • [36] A Physically Constrained Variational Autoencoder for Geochemical Pattern Recognition
    Yihui Xiong
    Renguang Zuo
    Zijing Luo
    Xueqiu Wang
    Mathematical Geosciences, 2022, 54 : 783 - 806
  • [37] A Geologically Constrained Variational Autoencoder for Mineral Prospectivity Mapping
    Renguang Zuo
    Zijing Luo
    Yihui Xiong
    Bojun Yin
    Natural Resources Research, 2022, 31 : 1121 - 1133
  • [38] A Physically Constrained Variational Autoencoder for Geochemical Pattern Recognition
    Xiong, Yihui
    Zuo, Renguang
    Luo, Zijing
    Wang, Xueqiu
    MATHEMATICAL GEOSCIENCES, 2022, 54 (04) : 783 - 806
  • [39] Data-Targeted Prior Distribution for Variational AutoEncoder
    Akkari, Nissrine
    Casenave, Fabien
    Daniel, Thomas
    Ryckelynck, David
    FLUIDS, 2021, 6 (10)
  • [40] Research on load clustering algorithm based on variational autoencoder and hierarchical clustering
    Cai, Miaozhuang
    Zheng, Yin
    Peng, Zhengyang
    Huang, Chunyan
    Jiang, Haoxia
    PLOS ONE, 2024, 19 (06):