Unsupervised Clustering Using a Variational Autoencoder with Constrained Mixtures for Posterior and Prior

被引:0
|
作者
Chowdhury, Mashfiqul Huq [1 ]
Hirose, Yuichi [1 ]
Marsland, Stephen [1 ]
Yao, Yuan [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Clustering; GMM; Latent Space; Mixture VAE; Representation Learning;
D O I
10.1007/978-981-96-0116-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering high-dimensional unlabelled data is a challenging task. We propose a probabilistic generative model based on the variational autoencoder (VAE) that learns the underlying statistical distribution of the dataset and performs cluster analysis. We assume a mixture distribution for both the posterior and prior components and derive the evidence lower bound of our mixtures VAE algorithm, which integrates the clustering distribution within each component of the VAE framework. We explicitly use the EM algorithm to find the clustering assignment estimate and model parameters. We also propose a constrained version of the mixtures VAE model to balance the reconstruction and regularization components during optimization. The experimental results of our proposed model demonstrate superior clustering performance compared to baseline algorithms. Moreover, the proposed model generates realistic examples from specified clusters in the latent space.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [1] UNSUPERVISED ANOMALY DETECTION USING VARIATIONAL AUTOENCODER WITH GAUSSIAN RANDOM FIELD PRIOR
    Gangloff, Hugo
    Pham, Minh-Tan
    Courtrai, Luc
    Lefevre, Sebastien
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1620 - 1624
  • [2] ACCELERATED UNSUPERVISED CLUSTERING IN ACOUSTIC SENSOR NETWORKS USING FEDERATED LEARNING AND A VARIATIONAL AUTOENCODER
    Becker, Luca
    Nelus, Alexandra
    Glitza, Rene
    Martin, Rainer
    2022 INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC 2022), 2022,
  • [3] Unsupervised convolutional variational autoencoder deep embedding clustering for Raman spectra
    Guo, Yixin
    Jin, Weiqi
    Wang, Weilin
    Guo, Zongyu
    He, Yuqing
    ANALYTICAL METHODS, 2022, 14 (39) : 3898 - 3910
  • [4] Unsupervised Anomaly Detection in Rotating Machinery Using Variational Autoencoder
    Nomura Y.
    Yako H.
    Hattori H.
    Nakayama M.
    Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71 (03): : 296 - 302
  • [5] Unsupervised Anomaly detection of LM Guide Using Variational Autoencoder
    Kim, Min Su
    Yun, Jong Pil
    Lee, Suwoong
    Park, PooGyeon
    2019 11TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2019,
  • [6] Unsupervised Flight Fault Propagation Analysis Using a Variational Autoencoder
    Mladenov, Emanuil
    Martinez-Garcia, Miguel
    Zhang, Yu
    Khan, Shaheryar
    Patankar, Faizan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [7] Deep Clustering With Variational Autoencoder
    Lim, Kart-Leong
    Jiang, Xudong
    Yi, Chenyu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 231 - 235
  • [8] Unsupervised Clustering through Gaussian Mixture Variational AutoEncoder with Non-Reparameterized Variational Inference and Std Annealing
    Li, Zhihan
    Zhao, Youjian
    Xu, Haowen
    Chen, Wenxiao
    Xu, Shangqing
    Li, Yilin
    Pei, Dan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Unsupervised Subtyping of Cholangiocarcinoma Using a Deep Clustering Convolutional Autoencoder
    Muhammad, Hassan
    Sigel, Carlie S.
    Campanella, Gabriele
    Boerner, Thomas
    Pak, Linda M.
    Buttner, Stefan
    IJzermans, Jan N. M.
    Koerkamp, Bas Groot
    Doukas, Michael
    Jarnagin, William R.
    Simpson, Amber L.
    Fuchs, Thomas J.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 604 - 612
  • [10] Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images
    Gangloff, Hugo
    Pham, Minh-Tan
    Courtrai, Luc
    Lefevre, Sebastien
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 600 - 609